题目要求,从0出发,必须经过N个点,然后回到0点。
每两个点之间花费的时间不同,i到j和j到i也不同,求最短时间。
1先用floyd算法求出两点之间最短路径
2递归方程 dp[j][i]=min(dp[j][i],dp[k][i&(~(1<<j))]+map[k][j]);
j表示终点 i为二进制表示状态 1表示经过 0表示不经过 把所有可能的路径排列出来 找最小值
i&(~(1<<j)) 表示i的第j位从1变成0之后的二进制数
k表示中转点 先从去掉一个经过点的位置到k 再从k到j 看这样的路径会不会比i的情况短
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int n,map[12][12],dp[12][1<<12];
void floyd()//找一个矩阵 两点之间的最短路径
{
int i,j,k;
for(k=0;k<=n;k++)
for(i=0;i<=n;i++)
for(j=0;j<=n;j++)
map[i][j]=min(map[i][k]+map[k][j],map[i][j]);
}
int main()
{
int i,j,k,m;
scanf("%d",&n);
while(n)
{
memset(dp,0x3f,sizeof(dp));//记住最大值的表示啊。。0x3f 0x3f 0x3f
for(i=0;i<=n;i++)
for(j=0;j<=n;j++)
scanf("%d",&map[i][j]);
floyd();
for(i=0;i<=n;i++)//把dp[i][1<<i](只用通过一个点的情况)初始化为0到i的距离
dp[i][1<<i]=map[0][i];
m=(1<<(n+1));
for(i=0;i<m;i++)//总状态数
for(j=0;j<=n;j++)//j为终点 递归
for(k=0;k<=n;k++)//k是取一个中间点
{
if((i>>j)%2)//先判断下第j位是不是1 是的话 就把这一点当做中间点 看总路程会不会小一些
dp[j][i]=min(dp[j][i],dp[k][i&(~(1<<j))]+map[k][j]);
} //map[][]前面是起点 后面是终点 dp[][]反过来 别弄反了
printf("%d\n",dp[0][m-1]);
scanf("%d",&n);
}
return 0;
}