POJ3311 Hie with the Pie(状态压缩dp)


题目要求,从0出发,必须经过N个点,然后回到0点。

每两个点之间花费的时间不同,i到j和j到i也不同,求最短时间。

1先用floyd算法求出两点之间最短路径

2递归方程 dp[j][i]=min(dp[j][i],dp[k][i&(~(1<<j))]+map[k][j]);

  j表示终点 i为二进制表示状态 1表示经过 0表示不经过 把所有可能的路径排列出来 找最小值

  i&(~(1<<j)) 表示i的第j位从1变成0之后的二进制数

  k表示中转点 先从去掉一个经过点的位置到k 再从k到j 看这样的路径会不会比i的情况短



#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;

int n,map[12][12],dp[12][1<<12];

void floyd()//找一个矩阵 两点之间的最短路径
{
    int i,j,k;
    for(k=0;k<=n;k++)
        for(i=0;i<=n;i++)
            for(j=0;j<=n;j++)
                map[i][j]=min(map[i][k]+map[k][j],map[i][j]);
}

int main()
{
    int i,j,k,m;
    scanf("%d",&n);
    while(n)
    {
        memset(dp,0x3f,sizeof(dp));//记住最大值的表示啊。。0x3f 0x3f 0x3f
        for(i=0;i<=n;i++)
            for(j=0;j<=n;j++)
                scanf("%d",&map[i][j]);
        floyd();
        for(i=0;i<=n;i++)//把dp[i][1<<i](只用通过一个点的情况)初始化为0到i的距离
            dp[i][1<<i]=map[0][i];
        m=(1<<(n+1));
        for(i=0;i<m;i++)//总状态数
            for(j=0;j<=n;j++)//j为终点 递归
                for(k=0;k<=n;k++)//k是取一个中间点
                {
                    if((i>>j)%2)//先判断下第j位是不是1 是的话 就把这一点当做中间点 看总路程会不会小一些
                        dp[j][i]=min(dp[j][i],dp[k][i&(~(1<<j))]+map[k][j]);
                }       //map[][]前面是起点 后面是终点 dp[][]反过来 别弄反了
        printf("%d\n",dp[0][m-1]);
        scanf("%d",&n);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值