本题要求编写程序,计算2个有理数的和、差、积、商。
输入格式:
输入在一行中按照“a1/b1 a2/b2”的格式给出两个分数形式的有理数,其中分子和分母全是整型范围内的整数,负号只可能出现在分子前,分母不为0。
输出格式:
分别在4行中按照“有理数1 运算符 有理数2 = 结果”的格式顺序输出2个有理数的和、差、积、商。注意输出的每个有理数必须是该有理数的最简形式“k a/b”,其中k是整数部分,a/b是最简分数部分;若为负数,则须加括号;若除法分母为0,则输出“Inf”。题目保证正确的输出中没有超过整型范围的整数。
输入样例1:
2/3 -4/2
输出样例1:
2/3 + (-2) = (-1 1/3)
2/3 - (-2) = 2 2/3
2/3 * (-2) = (-1 1/3)
2/3 / (-2) = (-1/3)
输入样例2:
5/3 0/6
输出样例2:
1 2/3 + 0 = 1 2/3
1 2/3 - 0 = 1 2/3
1 2/3 * 0 = 0
1 2/3 / 0 = Inf
#include<cstdio>
#include<iostream>
using namespace std;
//最大公约数
long long gong(long long a, long long b)
{
long long c = 0;
while (a%b != 0)
{
c = a%b;
a = b;
b = c;
}
return b;
}
//输出一个数
void show(long long a, long long b)
{
long long g;
if (a == 0)
printf("0");
else
{
int flag = 0;
if (a < 0)
{
a = -a;
flag = 1;
}
g = gong(a, b);
a /= g;
b /= g;
if (b == 1)
{
if(flag==0)
printf("%lld", a);
else
printf("(-%lld)", a);
}
else
{
if (a < b)
{
if (flag == 0)
printf("%lld/%lld", a, b);
else
printf("(-%lld/%lld)", a, b);
}
else
{
g = a / b;
if(flag==0)
printf("%lld %lld/%lld", g, a%b, b);
else
printf("(-%lld %lld/%lld)", g, a%b, b);
}
}
}
}
//加法
void add(long long a, long long b, long long c, long long d)
{
show(a, b);
printf(" + ");
show(c, d);
printf(" = ");
show(a*d + b*c, b*d);
printf("\n");
}
void minuss(long long a, long long b, long long c, long long d)
{
show(a, b);
printf(" - ");
show(c, d);
printf(" = ");
show(a*d - b*c, b*d);
printf("\n");
}
void multi(long long a, long long b, long long c, long long d)
{
show(a, b);
printf(" * ");
show(c, d);
printf(" = ");
show(a*c, b*d);
printf("\n");
}
void divide(long long a, long long b, long long c, long long d)
{
show(a, b);
printf(" / ");
show(c, d);
printf(" = ");
if (c == 0)
printf("Inf");
else
{
if (c < 0)
{
c = -c;
d = -d;
}
show(a*d, b*c);
}
}
int main()
{
long long a, b, c, d;
char x;
cin >> a >> x >> b >> c >> x >> d;
add(a, b, c, d);
minuss(a, b, c, d);
multi(a, b, c, d);
divide(a, b, c, d);
system("pause");
return 0;
}
最大公约数求法,参考:http://blog.csdn.net/iwm_next/article/details/7450424
代码参考:http://blog.csdn.net/fang_abc/article/details/44113963
。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
原来还有long long类型
前辈的思路很值得学习