计算1~N中数字X的个数,X=0~9.
解题思路一:
遍历所有数字
#include <stdio.h>
// 计算数字 X 在 n 中出现的次数。
int countOne(int n, int x) {
int cnt = 0;
for (;n > 0;n /= 10) {
if (n % 10 == x) {
cnt++;
}
}
return cnt;
}
// 计算数字 X 在 1-n 中出现的次数。
int count(int n, int x) {
int cnt = 0;
for (int i = 1;i <= n;i++) {
cnt += countOne(i, x);
}
return cnt;
}
int main() {
printf("%d\n", count(237, 1));
}
解题思路二:
分别求出个位、十位、百位……上X出现的次数
举个例子
首先要知道以下的规律:
•从 1 至 10,在它们的个位数中,任意的 X 都出现了 1 次。
•从 1 至 100,在它们的十位数中,任意的 X 都出现了 10 次。
•从 1 至 1000,在它们的千位数中,任意的 X 都出现了 100 次。
依此类推,从 1 至 10 i ,在它们的左数第二位(右数第 i 位)中,任意的 X 都出现了 10 i−1 次。
这个规律很容易验证,这里不再多做说明。
接下来以 n=2593,X=5 为例来解释如何得到数学公式。从 1 至 2593 中,数字 5 总计出现了 813 次,其中有 259 次出现在个位,260 次出现在十位,294 次出现在百位,0 次出现在千位。
现在依次分析这些数据,首先是个位。从 1 至 2590 中,包含了 259 个 10,因此任意的 X 都出现了 259 次。最后剩余的三个数 2591, 2592 和 2593,因为它们最大的个位数字 3 < X,因此不会包含任何 5。
然后是十位。从 1 至 2500 中,包含了 25 个 100,因此任意的 X 都出现了 25×10=250 次。剩下的数字是从 2501 至 2593,它们最大的十位数字 9 > X,因此会包含全部 10 个 5。最后总计 250 + 10 = 260。
接下来是百位。从 1 至 2000 中,包含了 2 个 1000,因此任意的 X 都出现了 2×100=200 次。剩下的数字是从 2001 至 2593,它们最大的百位数字 5 == X,这时情况就略微复杂,它们的百位肯定是包含 5 的,但不会包含全部 100 个。如果把百位是 5 的数字列出来,是从 2500 至 2593,数字的个数与百位和十位数字相关,是 93+1 = 94。最后总计 200 + 94 = 294。
最后是千位。现在已经没有更高位,因此直接看最大的千位数字 2 < X,所以不会包含任何 5。到此为止,已经计算出全部数字 5 的出现次数。
计算1-9出现的次数
// 计算数字 X 在 1-n 中出现的次数。
int count(int n, int x) {
int cnt = 0, k;
for (int i = 1;k = n / i;i *= 10) {
// k / 10 为高位的数字。
cnt += (k / 10) * i;
// 当前位的数字。
int cur = k % 10;
if (cur > x) {
cnt += i;
} else if (cur == x) {
// n - k * i 为低位的数字。
cnt += n - k * i + 1;
}
}
return cnt;
}
计算0出现的次数
// 计算数字 0 在 1-n 中出现的次数。
int countZero(int n) {
int cnt = 0, k;
// k / 10 为高位的数字。
for (int i = 1;(k = n / i) / 10;i *= 10) {
cnt += (k / 10) * i;
// k % 10 为当前位的数字。
if (k % 10 == 0) {
// n - k * i 为低位的数字。
cnt += n - k * i + 1 - i;
}
}
return cnt;
}
将以上整合一下
// 计算数字 X 在 1-n 中出现的次数。
int count(int n, int x) {
int cnt = 0, k;
for (int i = 1;k = n / i;i *= 10) {
// 高位的数字。
int high = k / 10;
if (x == 0) {
if (high) {
high--;
} else {
break;
}
}
cnt += high * i;
// 当前位的数字。
int cur = k % 10;
if (cur > x) {
cnt += i;
} else if (cur == x) {
// n - k * i 为低位的数字。
cnt += n - k * i + 1;
}
}
return cnt;
}