KMP模板

kmp用来快速求一个字符串的给定字串的数量。可以说是pascal的pos(),十分高效
详细解释点这里
求next

for i:=2 to m do
    begin
        while (j>0)and(s[i]<>s[j+1]) do j:=next[j];
        if s[i]=s[j+1] then inc(j);
        next[i]:=j;
    end;

求KMP

function kmp(s1,s2:ansistring):longint;
var
    i,j,k,n,ans:longint;
begin
    j:=0;n:=length(s1);ans:=0;
    for i:=1 to n do
    begin
        while (j>0)and(s1[i]<>s2[j+1]) do begin j:=next[j];end;
        if s1[i]=s2[j+1] then inc(j);
        if j=m then
        begin
            inc(ans);
            j:=next[j];
        end;
    end;
    exit(ans);
end;
<think>好的,我现在需要帮用户找到关于KMP算法中字符串处理的模板代码或示例。首先,我得回忆一下KMP算法的基本概念和实现步骤。KMP算法主要用于高效地进行字符串匹配,它的核心在于利用部分匹配表(也称为next数组)来避免不必要的回溯。 用户明确要求模板代码,所以我应该先确保提供的代码示例是正确且符合KMP的标准实现。记得KMP算法的关键部分是构建next数组,然后在匹配过程中使用这个数组来决定模式串移动的位置。代码需要清晰展示这两个部分:构建next数组和匹配过程。 接下来,我需要检查是否有常见的实现错误。比如,在构建next数组时,通常有两种方式:一种是将next数组长度设为模式串长度,另一种是长度加一。这里需要确定代码中的数组索引是否正确处理。例如,示例代码中的next数组从0开始,初始值设为-1,这可能是一个常见的做法,但需要确认是否正确。 另外,用户提到了字符串处理相关的模板,所以代码应该展示如何在实际匹配中使用next数组。需要确保匹配逻辑正确,比如在字符不匹配时如何回溯模式串的指针,以及在匹配成功时如何处理。 还要考虑代码的语言选择。用户没有指定编程语言,但根据问题中的示例代码是Python,可能更倾向于Python实现。不过,KMP算法在C++或Java中也很常见,但考虑到通用性,Python示例可能更合适,因为语法简洁易懂。 然后,我需要验证示例代码的正确性。例如,构建next数组时,指针j的初始值是否正确,循环中的条件是否覆盖所有情况。比如,示例代码中的构建部分,j从0开始,i从1开始,这可能有问题,因为通常j应该初始化为-1,或者根据具体实现而定。这里需要仔细检查代码逻辑是否正确。 另外,考虑到用户可能需要代码的注释来理解各部分的作用,所以在代码中添加注释是必要的,说明每个步骤的目的,比如如何初始化next数组,如何更新指针等。 最后,根据用户的要求,生成相关问题。这些问题应该围绕KMP算法的不同方面,比如应用场景、优化方法、与其他算法的比较等,帮助用户进一步学习和应用。 总结一下,我需要提供正确的KMP算法实现代码,确保语法正确,逻辑清晰,并附上相关的问题,帮助用户深入理解。</think>### KMP算法实现与字符串匹配 KMP算法通过预处理模式字符串生成$next$数组,实现在$O(n+m)$时间复杂度内完成字符串匹配[^1]。其核心思想是当字符不匹配时,利用已匹配部分的信息跳过不必要的比较。 ```python def kmp_search(text, pattern): # 构建next数组 next = [0] * len(pattern) next[0] = -1 i, j = 0, -1 while i < len(pattern) - 1: if j == -1 or pattern[i] == pattern[j]: i += 1 j += 1 next[i] = j else: j = next[j] # 执行匹配 i = j = 0 while i < len(text) and j < len(pattern): if j == -1 or text[i] == pattern[j]: i += 1 j += 1 else: j = next[j] return i - j if j == len(pattern) else -1 ``` 代码解析: 1. $next$数组构建:通过前缀匹配确定最长公共前后缀长度 2. 匹配阶段:当$text[i] \neq pattern[j]$时,根据$next[j]$跳转 3. 时间复杂度:预处理$O(m)$,匹配$O(n)$
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值