我恨码农题!!!
另外,这题可以当做可持久化线段树与树链剖分的模板题
题目大意
一棵树,三个操作
1、从X到Y的路径上每个点的权值加Z
2、查询X到Y的一些神奇东西
3、将树回复到第X次操作后的状态
输入
第一行n,m。n个点,m个操作
接下来n-1行每行两个数表示X连到Y
接下来一行n个数:每个点的初始权值
接下来M行对应上面的三种操作(其中X和Y要亦或上次的答案)
题解
deep[i]表示深度,a[i]为i的权值
其中有40% 的数据是一条链,其中的20%没有操作3,从这里开始。
简化一下求得一个东西,可以发现,在X到Y中一个点的贡献为:
第一部分:从X到lca
设点i到Y的距离为S,则
s=deep[i]+deep[y]−2∗deep[lca]
,这个点对答案的贡献为
a[i]∗s∗(s+1)/2
,先忽略
/2
,设
T=deep[y]−2∗deep[lca]
,贡献就变成了
a[i]∗deep[i]2+a[i]∗deep[i]∗(2∗t+1)+a[i]∗(t+t2)
。
第二部分:从lca到Y
s=deep[y]−deep[i]
,贡献相同,那么
T=deep[y]
,贡献为
a[i]∗deep[i]2−a[i]∗deep[i]∗(2∗t+1)+a[i]∗(t+t2)
。
那么只需要用线段树维护
a[i]∗deep[i]2
,
a[i]∗deep[i]
,
a[i]
,即可。最后答案记得/2。
对于另外20%的数据,操作3:加上可持久化
对于其他的数据:由一条链变成一棵树:树链剖分
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<cmath>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
#define N 101000
#define ll long long
#define mo 20160501
#define ny 10080251
using namespace std;
struct note{
int l,r;
ll a,adf,ad,d,df,lz;
};
note tree[N*70];
int n,g[N],last[N*10],next[N*10],to[N*10],son[N],top[N],dfn[N],fdn[N],size[N],fa[N],tot=1,tt=0,t,totot=0,tn=0,f[N][18];
ll ans,deep[N],a[N];
void putin(int x,int y)
{
next[++totot]=last[x];last[x]=totot;to[totot]=y;
}
void dg1(int x)
{
size[x]=1;int jy=0;
for(int i=last[x];i;i=next[i])
{
if (deep[to[i]]!=0) continue;
deep[to[i]]=deep[x]+1;fa[to[i]]=x;
dg1(to[i]);
if (size[to[i]]>jy) son[x]=to[i],jy=size[to[i]];
size[x]+=size[to[i]];
}
}
void dg2(int x,int y)
{
dfn[x]=++totot;fdn[totot]=x;if (son[x]) top[son[x]]=top[x],dg2(son[x],x);
for(int i=last[x];i;i=next[i])
{
if (to[i]==son[x] || to[i]==y) continue;
top[to[i]]=to[i];dg2(to[i],x);
}
}
void build(int v,int i,int j)
{
if (i==j)
{
ll k=fdn[i];
tree[v].a=a[k];tree[v].ad=(a[k]*deep[k])% mo;tree[v].adf=(a[k]*deep[k]*deep[k])% mo;
tree[v].d=deep[k];tree[v].df=(deep[k]*deep[k])% mo;
return;
}
int mid=(i+j)/2;
tree[v].l=++tot;build(tot,i,mid);
tree[v].r=++tot;build(tot,mid+1,j);
tree[v].a=(tree[tree[v].l].a+tree[tree[v].r].a)%mo;
tree[v].ad=(tree[tree[v].l].ad+tree[tree[v].r].ad)%mo;
tree[v].adf=(tree[tree[v].l].adf+tree[tree[v].r].adf)%mo;
tree[v].d=(tree[tree[v].l].d+tree[tree[v].r].d)%mo;
tree[v].df=(tree[tree[v].l].df+tree[tree[v].r].df)%mo;
}
void down(int v,int i,int j)
{
if (i==j) {tree[v].lz=0;return;}
ll mid=(i+j)/2;ll z=tree[v].lz;
tree[++tot]=tree[tree[v].l];tree[tot].a=(tree[tot].a+(mid-i+1)*z)%mo;
tree[tot].ad=(tree[tot].ad+z*tree[tot].d)%mo;tree[tot].adf=(tree[tot].adf+z*tree[tot].df)%mo;
tree[tot].lz=(tree[tot].lz+z)%mo;tree[v].l=tot;
tree[++tot]=tree[tree[v].r];tree[tot].a=(tree[tot].a+(j-mid)*z)% mo;
tree[tot].ad=(tree[tot].ad+z*tree[tot].d)%mo;tree[tot].adf=(tree[tot].adf+z*tree[tot].df)%mo;
tree[tot].lz=(tree[tot].lz+z)%mo;tree[v].r=tot;
tree[v].lz=0;
}
void insert(int v,int i,int j,int x,int y,ll z)
{
if (i==x && j==y)
{
tree[v].a=(tree[v].a+(j-i+1)*z)%mo;tree[v].ad=(tree[v].ad+z*tree[v].d)%mo;
tree[v].adf=(tree[v].adf+z*tree[v].df)%mo;tree[v].lz=(tree[v].lz+z)%mo;return;
}
int bz=0;
if (tree[v].lz) down(v,i,j),bz=1;
int mid=(i+j)/2;
if (y<=mid)
{
if (!bz) tree[++tot]=tree[tree[v].l],tree[v].l=tot;
insert(tree[v].l,i,mid,x,y,z);
}
else if (x>mid)
{
if (!bz) tree[++tot]=tree[tree[v].r],tree[v].r=tot;
insert(tree[v].r,mid+1,j,x,y,z);
}
else
{
if (!bz) tree[++tot]=tree[tree[v].l],tree[v].l=tot;insert(tree[v].l,i,mid,x,mid,z);
if (!bz) tree[++tot]=tree[tree[v].r],tree[v].r=tot;insert(tree[v].r,mid+1,j,mid+1,y,z);
}
tree[v].a=(tree[tree[v].l].a+tree[tree[v].r].a)%mo;
tree[v].ad=(tree[tree[v].l].ad+tree[tree[v].r].ad)%mo;
tree[v].adf=(tree[tree[v].l].adf+tree[tree[v].r].adf)%mo;
tree[v].d=(tree[tree[v].l].d+tree[tree[v].r].d)%mo;
tree[v].df=(tree[tree[v].l].df+tree[tree[v].r].df)%mo;
}
void find(int v,int i,int j,int x,int y,int z)
{
if (i==x && j==y)
{
ans+=(tree[v].adf+(tree[v].a*((t+t*t)%mo))%mo)%mo;
if (z==1) ans+=(tree[v].ad*((2*t+1)%mo))%mo;
else ans-=(tree[v].ad*((2*t+1)%mo))%mo;
ans=(ans+mo)%mo;
return;
}
if (tree[v].lz) down(v,i,j);
int mid=(i+j)/2;
if (y<=mid) find(tree[v].l,i,mid,x,y,z);
else if (x>mid) find(tree[v].r,mid+1,j,x,y,z);
else find(tree[v].l,i,mid,x,mid,z),find(tree[v].r,mid+1,j,mid+1,y,z);
}
int lca(int x,int y)
{
fd(i,16,0) if(deep[f[x][i]]>=deep[y]) x=f[x][i];
fd(i,16,0) if(deep[f[y][i]]>=deep[x]) y=f[y][i];
fd(i,16,0) if(f[x][i]!=f[y][i]) x=f[x][i],y=f[y][i];
if (x!=y) x=f[x][0],y=f[y][0];return x;
}
void lct(int x,int y,ll jy)
{
int t1,t2,lc,bz=1;
lc=lca(x,y);
t1=deep[y]-2*deep[lc];
t2=deep[y];
while (x!=y)
{
int f1=top[x],f2=top[y];
if (f1!=f2)
{
if (deep[f1]>=deep[f2])
{
t=t1;
if (jy>0)
insert(g[tn],1,n,dfn[f1],dfn[x],jy);
else
find(g[tn],1,n,dfn[f1],dfn[x],1);
x=fa[f1];
}
else
{
t=t2;
if (jy>0)
insert(g[tn],1,n,dfn[f2],dfn[y],jy);
else
find(g[tn],1,n,dfn[f2],dfn[y],2);
y=fa[f2];
}
}
else
{
bz=0;
if (deep[x]<=deep[y])
{
t=t2;
if (jy>0)
insert(g[tn],1,n,dfn[x],dfn[y],jy);
else
find(g[tn],1,n,dfn[x],dfn[y],2);
}
else
{
t=t1;
if (jy>0)
insert(g[tn],1,n,dfn[y],dfn[x],jy);
else
find(g[tn],1,n,dfn[y],dfn[x],1);
}
break;
}
}
if (x!=0 && x==y && bz)
{
t=t1;
if (jy>0)
insert(g[tn],1,n,dfn[y],dfn[x],jy);
else
find(g[tn],1,n,dfn[y],dfn[x],1);
}
}
int main()
{
freopen("zootopia.in","r",stdin);
freopen("zootopia.out","w",stdout);
int ac;
scanf("%d%d",&n,&ac);
fo(i,1,n-1)
{
int x,y;scanf("%d%d",&x,&y);
putin(x,y);putin(y,x);
}
g[0]=1;
fo(i,1,n) scanf("%d",&a[i]);
deep[1]=1;dg1(1);totot=0;dfn[1]=1;top[1]=1;dg2(1,0);
build(g[0],1,n);
fo(i,1,n) f[i][0]=fa[i];
fo(j,1,16)
fo(i,1,n) f[i][j]=f[f[i][j-1]][j-1];
for(;ac;ac--)
{
int yy;
scanf("%d",&yy);
if (yy==1)
{
int x,y;ll z;scanf("%d%d%lld",&x,&y,&z);x^=ans;y^=ans;
g[++tt]=++tot;tree[tot]=tree[g[tn]];tn=tt;
lct(x,y,z);
}
if (yy==2)
{
int x,y;scanf("%d%d",&x,&y);x^=ans;y^=ans;
ans=0;lct(x,y,-1);
ans=(ans*ny)%mo;
printf("%d\n",ans);
}
if (yy==3)
{
int x;scanf("%d",&x);x^=ans;
tn=x;
}
}
fclose(stdin);fclose(stdout);
}