【NOIP2016提高A组模拟9.9】爬山

17 篇文章 0 订阅
7 篇文章 0 订阅

Description

国家一级爬山运动员h10今天获得了一张有着密密麻麻标记的地图,在好奇心的驱使下,他又踏上了去爬山的路。
对于爬山,h10有一个原则,那就是不走回头路,于是他把地图上的所有边都标记成了有向边。他决定从点S出发,每到达一个新的节点他就可以获得一定的成就值。同时h10又是一个很珍惜时间的运动员,他不希望这次爬山的成就值白白浪费,所以最后他一定要在一个存档点停下,保存自己的成就值。
请你计算出在此次爬山运动中h10能够得到的最大成就值。保证h10能走到存档点。

Input

第一行两个整数 N,M,表示点数和边数。
接下来 M 行,每行两个整数 u,v,表示u到v有一条有向边(没有自环)。
第 M+2 行 N 个正整数,表示每个点的成就值。
接下来一行两个整数 S,p,表示出发点和存档点个数。
下面一行 p 个整数,表示存档点。

Output

一个正整数,表示最大成就值。

Sample Input

5 7
5 1
3 1
2 5
3 5
4 3
4 2
4 5
7 6 3 2 2
4 3
1 5 2

Sample Output

17

Data Constraint

对于 30% 的数据, N,M≤1000,并且地图为有向无环图。
对于 100% 的数据, N,M≤500000。(数据有梯度,注意答案的大小)

Solution

这题和以前做过的某道题是几乎一样的
对于无环图,直接SPFA,最后找到最大的一个终点,就行了
那么有环呢?缩环解决
缩环显然是用Tarjan
然而Tarjan一般是要递归的,这里会爆栈,于是打人工栈
不会的点上面的Tarjan

Code

#include<cstdio>
#include<cstring>
#include<algorithm>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define N 501000
#define ll long long
using namespace std;
int n,m,last[N*10],next[N*10],to[N*10],b[N][2],d[N*10],tot=0,bz[N],bz2[N],low[N],dfn[N],p[N],c[N],totot=0,zx[N],zi[N],zk[N],o;
ll a[N],f[N],co[N];
void putin(int x,int y)
{
    if(x==y) return;
    next[++tot]=last[x];last[x]=tot;to[tot]=y;
}
void spfa(int s)
{
    fo(i,1,n) f[i]=-9223372036854775807ll,bz[i]=0;
    int i=0,j=1;d[1]=s;f[s]=co[s];
    while(i<j)
    {
        int q=d[++i];
        for(int k=last[q];k;k=next[k])
        {
            int l=to[k];
            if(f[l]<f[q]+co[l])
            {
                f[l]=f[q]+co[l];
                if(!bz[l]) bz[l]=1,d[++j]=l;
            }
        }
        bz[q]=0;
    }
}
void tarjan1()
{
    int x=zx[o];low[x]=dfn[x]=++tot;p[++p[0]]=x;bz[x]=bz2[x]=1;
    for(int i=last[x];i;i=next[i])
    {
        if(!bz[to[i]])
        {
            zk[o]=1;zi[o]=i;zx[++o]=to[i];zk[o]=0;return;
        } 
        else if(bz2[to[i]]) low[x]=min(low[x],dfn[to[i]]);
    }
    if(low[x]==dfn[x])
    {
        totot++;
        for(;p[p[0]+1]!=x;p[0]--) c[p[p[0]]]=totot,bz2[p[p[0]]]=0;
    }
    o--;
}
void tarjan2()
{
    int x=zx[o];low[x]=min(low[x],low[to[zi[o]]]);
    for(int i=next[zi[o]];i;i=next[i])
    {
        if(!bz[to[i]])
        {
            zk[o]=1;zi[o]=i;zx[++o]=to[i];zk[o]=0;return;
        } 
        else if(bz2[to[i]]) low[x]=min(low[x],dfn[to[i]]);
    }
    if(low[x]==dfn[x])
    {
        totot++;
        for(;p[p[0]+1]!=x;p[0]--) c[p[p[0]]]=totot,bz2[p[p[0]]]=0;
    }
    o--;
}
void tarjan(int x)
{
    zx[++o]=x;zk[o]=0;zi[o]=0;
    while(o>0){if(zk[o]==0) tarjan1(); else tarjan2();}
}
int main()
{
    scanf("%d%d",&n,&m);
    fo(i,1,m) 
    {
        scanf("%d%d",&b[i][0],&b[i][1]);
        putin(b[i][0],b[i][1]);
    }
    fo(i,1,n) scanf("%lld",&a[i]);
    int s,q;scanf("%d%d",&s,&q);
    ll ans=0;tot=0;
    fo(i,1,n) if(!bz[i]) tarjan(i); 
    fo(i,1,n) co[c[i]]+=a[i];
    memset(last,0,sizeof(last));tot=0;
    fo(i,1,m) putin(c[b[i][0]],c[b[i][1]]);
    spfa(c[s]);
    for(;q;q--)
    {
        int x;scanf("%d",&x);
        ans=ans<f[c[x]]?f[c[x]]:ans;
    }
    printf("%lld",ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值