Description
你为了击毁地方的坦克,使用了一种叫做激光炮的武器。
每辆坦克可以认为是二维平面内的一个点(Xi,Yi),各有速度:每秒位移是(VXi,VYi)。从0时刻开始,你可以在0时刻之后的任何一个整数时刻在任意位置任意方向开启你的激光炮,你的激光炮可以摧毁当前时刻某一直线上的所有坦克。
任何两辆坦克在移动过程中都不会相互影响,即使他们重合了。
你的目标是摧毁尽量多的坦克,现在请你计算出最多能摧毁多少坦克。
Input
有多组测试数据,每组测试数据第一行一个正整数n表示坦克数目,接下来n行每行四个整数Xi, Yi, VXi, VYi如题意所述。最后以0结束。
Output
每组测试数据输出一行,一个正整数表示最多摧毁的坦克数目。
Sample Input
4
9 9 -1 -1
4 1 3 6
1 8 6 -1
1 3 1 4
0
Sample Output
3
Data Constraint
对于20%的数据,n ≤ 20
对于100%的数据,约有20组数据, 1 ≤ n ≤ 100
其他数在longint范围内。
Solution
这题看似 O(n4∗数据组数) 的复杂度过不去,但是实际上应该是可以的
首先,枚举三个数,可以确定一条直线
你会问,说好的两点确定一条直线呢?
因为它有时间这个限制,所以两点确定的直线在时间不同时会不同
那么枚举的这三个数就要通过解方程得到这条直线的时间
它可能是一个二次方程,也可能是一个一次方程,也可能有无数解,也可能无解,都要分别判断
这部分需要你手推一下方程,你会发现非常非常的长
然后构出一条直线并判断有多少个点在这条直线上就行了
这条直线有两种形式,一种是
y=kx+b
,另一种是
y=a
又要分别判断
Code
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define N 111
#define db double
using namespace std;
int x[N],y[N],vx[N],vy[N],n,cs,ans;
db x1,x2;
void pd(int i,int j,int k)
{
x1=x2=cs=-1;
db a1=y[j]-y[i],b1=x[j]-x[i],c1=y[k]-y[j],d1=x[k]-x[j];
db a2=vy[j]-vy[i],b2=vx[j]-vx[i],c2=vy[k]-vy[j],d2=vx[k]-vx[j];
db a=a2*d2-b2*c2,b=a1*d2+a2*d1-b1*c2-c1*b2,c=a1*d1-b1*c1;
if(a==0)
{
if(b==0)
{
if(c==0) cs=1;
return;
}
x1=-c/b;
return;
}
db dt=b*b-4*a*c;
if (dt<0) return;
dt=sqrt(dt);
x1=(-b+dt)/2/a;x2=(-b-dt)/2/a;
}
void work(int t,int i,int j)
{
db x1=x[i]+t*vx[i],y1=y[i]+t*vy[i],x2=x[j]+t*vx[j],y2=y[j]+t*vy[j];
db a;
if(x2-x1==0) a=-1234;else a=(y2-y1)/(x2-x1);
db b=y1-a*x1;
int an=0;
if(a==-1234)
{
fo(k,1,n) if(((x[k]+t*vx[k])==x1)) an++;
}
else
{
fo(k,1,n) if((a*(x[k]+t*vx[k])+b)==(y[k]+t*vy[k])) an++;
}
ans=max(ans,an);
}
int main()
{
scanf("%d",&n);
while(n)
{
fo(i,1,n) scanf("%d%d%d%d",&x[i],&y[i],&vx[i],&vy[i]);
ans=2;
if(n==1) ans=1;
fo(i,1,n-2)
{
fo(j,i+1,n-1)
{
fo(k,j+1,n)
{
pd(i,j,k);
if(cs==1) work(1,i,j);
if(x1==trunc(x1)&&x1>0) work(trunc(x1),i,j);
if(x2==trunc(x2)&&x2>0) work(trunc(x2),i,j);
}
}
}
printf("%d\n",ans);
scanf("%d",&n);
}
}