大数分解质因数和快速判断质数
结果在p里面
#define ll long long
#define fo(i,a,b) for(int i=a;i<=b;i++)
ll mul(ll a,ll b,ll mo)
{
ll jy=0;
for(;b;b/=2,a=(a+a)%mo) if(b%2==1) jy=(jy+a)%mo;
return jy;
}
ll mi(ll a,ll b,ll mo)
{
ll c=1;a%=mo;
for(;b;b/=2,a=mul(a,a,mo)) if(b%2==1) c=mul(c,a,mo);
return c;
}
bool miller_rabin(ll n)
{
if(n==2) return 1;
if(n%2==0) return 0;
ll r=n-1;int j=0;
for(;r%2==0;r/=2) j++;
fo(i,1,8)
{
ll a=(ll)rand()*(ll)rand()%(n-2)+2;
ll x=mi(a,r,n),las=x;
fo(k,1,j)
{
x=mul(x,x,n);
if(x==1&&las!=1&&las!=n-1) return 0;
las=x;
}
if(x!=1) return 0;
}
return 1;
}
ll rd(ll x,ll n,ll c){return (mul(x,x,n)+c)%n;}
ll pollard_rho(ll n,ll c)
{
ll x=rand()%(n-2)+2,y=x,d;
if(n%x==0) return x;
while(1)
{
x=rd(x,n,c);
y=rd(rd(y,n,c),n,c);
if(y==x) return n;
d=gcd(abs(x-y),n);
if(d>1&&d<n) return d;
}
}
void find(ll n,ll c)
{
if(n==1) return;
if(miller_rabin(n))
{
if(bz[n]==0) p[++p[0]]=n,bz[n]=1;
return;
}
ll p=n;
while(p==n) p=pollard_rho(n,c--);
find(p,c);find(n/p,c);
}
int main()
{
find(n,(ll)rand()*(ll)rand());
}