题目: LINK
给定一个无向图,n个点, m条边,k个特殊点(有传感器),只有当第一次到达特殊点的时候才会发出信号,给出发出信号的序列,问是否存在这样的路径使得每个点至少遍历一次,而且特殊点第一次到达的顺序和和题目输入一样。
(1 <= N <= 100000), M (1 <= M <= 200000)
先特判 如果询问时输入的L<k, 那么直接No, 因为l<k肯定有传感器的点没有到达,不满足每个点都遍历一次。
先把第一个特殊点入队,遍历所有的可以到达的点(中途不经过其他特殊点),标记为可以到达。 之后把第一个点标记为普通点。
之后判断第二个点是否可以从第一个点到达(是否被标记),如果不可以则No,否则标记第二个点为普通点,遍历从第二个特殊点出发的可以到达的点(同样中途不经过剩余特殊点).
.......
依次处理完所有点即可.
如果前面的一个特殊点可以到达某个点,那么 他后面的特殊点一定也可以到达这些点,因为他可以回到前面的特殊点再走过去.
#include <vector>
#include <queue>
#include <string>
#include <cstdio>
#include <cstring>
using namespace std;
const int NN = 100005;
const int MM = 200010;
int N, M, K, L, q[NN];
bool sen[NN], vis[NN];
vector<int> e[NN];
bool sol() {
memset(vis, 0, sizeof(vis));
vis[q[0]] = 1;
for (int i = 0; i < L; i++) {
if (!vis[q[i]]) return 0; //i-th点无法到达
sen[q[i]] = 0;//标记为普通点
queue<int> que;
que.push(q[i]);
while (!que.empty()) {
int x = que.front();
que.pop();
for (int i = 0; i < (int)e[x].size(); i++) {
int y = e[x][i];
if (!vis[y]) {
vis[y] = 1;
if (!sen[y]) {
que.push(y);
}
}
}
}
}
for (int i = 1; i <= N; i++)
if (!vis[i]) {
return 0;
}
return 1;
}
int main() {
int T;
scanf("%d", &T);
while (T--) {
scanf("%d%d%d", &N, &M, &K);
memset(sen, 0, sizeof(sen));
for (int i = 0; i < K; i++) {
int x;
scanf("%d", &x);
}
for (int i = 0; i < NN; i++) e[i].clear();
for (int i = 0; i < M; i++) {
int u, v;
scanf("%d%d", &u, &v);
e[u].push_back(v);
e[v].push_back(u);
}
scanf("%d", &L);
for (int i = 0; i < L; i++) {
scanf("%d", &q[i]);
sen[q[i]] = 1;
}
if(L < K) {
printf("No\n"); continue;
}
if (sol()) printf("Yes\n");
else printf("No\n");
}
return 0;
}