剑指offer(10):矩形覆盖问题

问题描述:

我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?

分析:
用第1个小矩形覆盖时,有两种方式:横放或者竖放。横放时,后面的方法还有 f(n1) ;竖放时后面的方法还有 f(n2) 。因此n个小矩形组成的大矩形被覆盖的总方法为 f(n)=f(n1)+f(n2) 。此处 f(1)=1,f(2)=2 ,根据测试用例和输出判断 f(0)=1 。因此该问题也是斐波那契数列。

矩形覆盖问题

牛客AC代码:

public class Solution {
    public int RectCover(int target) {
        if(target <= 0)
            return 1;
        if(target <= 2)
            return target;

        int f1 = 1;
        int f2 = 2;
        int fn = 0;
        for(int i = 3; i <= target; i++) {
            fn = f1 + f2;
            f1 = f2;
            f2 = fn;
        }
        return fn;
    }
}

参考
1. 何海涛,剑指offer名企面试官精讲典型编程题(纪念版),电子工业出版社

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值