2*1矩形覆盖问题

问题描述:我们可以用21的小矩形横着或竖着去覆盖更大的矩形。请问8个21的小矩形无重叠地覆盖一个28的大矩形,总共有多少种方法?
在这里插入图片描述
解决方法:我们先把2
8的覆盖方法记为f(8)。用第一个21的小矩形去覆盖大矩形的最左边时有两种选择:竖着放或者横着放。当竖着放的时候,右边还剩27的区域,这种情形下的的覆盖方法记为f(7)。接下来考虑横放的情况。当21的小矩形横着放在左上角的时候,左下角必须横放着一个21的小矩形,而在右边还剩下2*6的区域,这种情况下的覆盖方法记为f(6),因此f(8) = f(7)+f(6)。此时我们可以看出,这仍然是斐波那契数列。

将这个问题扩展:
我们可以用2*1的小矩形横着或竖着去覆盖更大的矩形,该矩形面积为MxN
没看懂这个代码…
原作者在此:上面也没写,只是给出了代码
本文链接:https://blog.csdn.net/update7/article/details/88642914

//用1*2骨牌覆盖n*m棋盘,有多少种方法? 
#include<iostream>
using namespace std;
int n,m,cur;
const int maxn=15;
long long d[2][1<<maxn];
void update(int a,int b){
	if(b&(1<<m)) d[cur][b^(1<<m)]+=d[1-cur][a];
}
int main()
{
	scanf("%d%d",&n,&m);
	if(n<m) 
		swap(n,m);
	memset(d,0,sizeof(d));
	cur=0;
	d[0][(1<<m)-1]=1;
	for(int i=0;i<n;++i)
	{
		for(int j=0;j<m;++j)
		{
			cur^=1;
			memset(d[cur],0,sizeof(d[cur]));
			for(int k=0;k<(1<<m);++k)
			{
				update(k,k<<1);
				if(i&&!(k&(1<<m-1))) update(k,(k<<1)^(1<<m)^1);
				if(j&&!(k&1)) update(k,(k<<1)^3);
			}
		}
	}
	printf("%lld\n",d[cur][(1<<m)-1]);
	system("pause");
	return 0;
}
©️2020 CSDN 皮肤主题: 书香水墨 设计师:CSDN官方博客 返回首页