人工智能和纳米技术正在共同努力解决现实世界的问题

本文探讨了人工智能和纳米技术在现实世界中的应用,通过实例如AFM显微镜和化学建模,展示了AI在处理纳米技术中的噪声信号和理解材料行为中的作用。纳米计算则展示了两者可能的交汇点,预示着未来技术的协同进步。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原始地址:https://stackoverflow.blog/2022/03/21/ai-and-nanotechnology-are-working-together-to-solve-real-world-problems/

人工智能(AI)和纳米技术是当今最受炒作的新兴技术之一。但从许多方面来说,它们也是最不为人了解的。虽然任何一种技术的非常规用例,比如AI模拟你的声音,会抓住人们的眼球,但事实上,AI和纳米技术已经存在并在日常生活中使用。
在这篇文章中,我们想要超越炒作。在这里,我们不会停留在推测性、遥远未来的应用案例上。相反,我们将关注AI和纳米技术已经在使用的真实世界中的情况。通过这样做,我们会立即看到这两种技术之间存在着自然的重叠,并且这种重叠可以推动两者的发展。

AI和纳米技术是什么(以及它们不是什么)
首先,关于AI和纳米技术是什么以及它们不是什么的问题。目前,这两种技术的新颖性使得许多人仍然认为它们属于科幻小说。这种印象并没有得到高调科学家的帮助,他们声称AI最终可能会摧毁人类,或者纳米技术可能会夺走我们的身体。
这些令人兴奋的、壮观的场景,但事实上,这两种技术的现实要低调得多,并与当代经济的需求密切相关。事实上,AI最广泛的应用是在聊天机器人中。目前,AI主要集中在客户服务上,而不是全面接管世界。
类似地,虽然“纳米技术”这个术语听起来仍然像是科幻小说中的一个术语,但对于从事该领域研究的研究人员来说,它有一个精确且不那么轰动的定义——ANT技术,它利用纳米米比例。而且今天,这实际上是相当常见的。根据华盛顿特区伍德罗威尔逊国际中心维护的数据库,已经有超过300种产品是基于纳米技术的。

有了这些定义,让我们来看一下这两种技术相互交织的三种方式。

原子力显微镜(AFM显微镜)
原子力显微镜(AFM)可能看起来是一个奥秘的起点,但它是纳米技术和人工智能如何共同工作的最清晰的例子之一。简单来说,AFM是一种在纳米尺度下成像物体的技术。在制造微芯片和观察人体内的细胞等方面,这对于质量保证非常有用。
问题是,在这个尺度上,构成显微镜本身的材料对返回的数据产生了显著影响。换句话说,如果你正在使用微小的原子力来研究材料,你需要为极噪音信号做好准备。这是纳米尺度显微术的固有属性,并且在电子显微镜中也会发生。虽然有方法可以过滤信号噪音,但它们计算上很昂贵。
这就是AI出现的地方。一种被称为功能识别成像(FR-SPM)的AI方法通过直接识别来自测量光谱反应的局部变化来解决这个问题。此过程使用了带有主成分分析(PCA)的人工神经网络(ANN)来流线型输入数据到神经网络中。
这些模型是通过对显微信号的详尽分析产生的数据集进行训练的。换句话说,虽然手动过滤信号噪音是可能的,但这需要对同一样本进行多次分析。与人类相比,AI模型能够更快地发现数据信号的主要成分。
这种方法使研究人员能够从周围噪声中识别出目标信号,并因此以更高效的方式在纳米尺度下使用材料。最重要的是,其中一些模型是以开源项目的形式提供的,这可能会加速科学界对这些模型的采用。

化学建模
在化学建模领域,也发生了类似的革命。化学建模模拟了分子之间的相互作用。它在生物科学和药物开发中被广泛使用。然而,最近科学家们开始使用相同的建模技术,更好地理解纳米尺度下材料的行为,从而提高其效率和功效。
神经网络多年来一直被用于化学建模,但直到最近才开始将它们应用于了特定的纳米技术,以进一步理解纳米技术材料在现实环境下的行为。AI被用于理解纳米碳管结构,通过量化结构特性,如排列和曲率。
为了生成化学系统的图像或动态描述,必须考虑很多因素。直到最近,就像上面的显微镜的例子一样,从周围噪音中分离这些因素一直很困难。然而,AI在这项任务中非常有效。
使用AI,科学家和工程师现在可以将系统或粒子的几何形状或尺寸相关的误差降到最低。做到这一点最流行的方法是对已经很好地理解其行为的系统产生的数据进行AI模型的训练。
对于纳米材料来说,像这样的技术特别有用,因为像石墨烯这样的材料经常很难再现出许多效应和现象。这种应用具有巨大的潜力。事实上,它承诺将机器学习整合到生产技术中,从而催化AI和纳米技术的未来发展。

纳米计算
最后,是纳米计算。这可以说是两个技术之间最接近的领域,也可能是最具生产力的重叠部分。
纳米计算的核心承诺是它可以大大提高研究人员和工程师的计算能力。近年来,一些人担心,摩尔定律即芯片上的晶体管数目和计算能力会在可预测的时间内翻倍,但随着我们建造越来越小的计算机,我们遇到了限制我们在这个尺度上工作能力的奇怪的量子效应。
纳米计算是解决这个问题的一种方法。纳米计算机使用各种新颖介质来进行计算,从有机化学反应到纳米MOSFET。然而,大多数这些设备依赖于复杂的物理系统,以便进行复杂的计算算法和机器学习过程,用于生成广泛用途的新型信息表示。

简而言之,AI可以帮助我们理解材料在纳米尺度下的工作方式。这可能使我们能够构建该尺度上不依赖于基于晶体管的架构的计算机。这反过来又将使AI变得更加复杂,从而使我们能够进一步探索这种行为。就像神经网络可以帮助计算机自编码一样,纳米计算技术可以使计算机自行构建。

未来
当然,AI和纳米技术都是新兴技术,还有待观察它们的发展情况。然而,这两种技术已经得到了广泛应用,这意味着我们可能会看到一种新兴的融合现象。AI的进步使我们能够理解纳米尺度下材料的行为,这反过来又可能使我们创建出更强大的AI。在这个意义上,这两种技术密切相互交织着。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值