SCAU_Jimmy的专栏

热爱机器学习、数据挖掘

个人整理的机器学习/数据挖掘相关算法

1. 梯度下降法、牛顿法

2. 最大似然估计法

3. 最小二乘法

4. 线性回归(基本思想是用梯度下降法对最小二乘法形式的误差函数进行优化)

5. K最近邻分类算法(KNN)

6. 决策树(ID3、C4.5算法、迭代决策树(GBRT)、随机森林)

7. 朴素贝叶斯(Naive Bayesian Model)

8. Logistic回归

9. 支持向量机(SVM)

10. 序列最小优化算法(SMO)

11. Boosting算法(Adaboost算法为例)

12. 分类树与回归树(CART)

13. 最大期望算法(EM)
 
14. Apriori算法

15.FP-growth算法

16. PageRank算法

17. 降维算法:主成分分析(PCA)、多维尺度(MDS)、线性判别式分析(LDA)、局部线性嵌入(LLE)、
                       拉普拉斯特征映射(Laplacian Eigenmaps)

18. 矩阵奇异值分解(SVD)
    
19. 隐含语义分析(LSA)
  
20. 概率潜语义分析(PLSA)
     
22. 规则化(Regularization)

23. 异常检测
 
24. 聚类(基于划分的聚类:K-Means , K-Medoids,Clarans    
                基于层次的聚类:自底向上的凝聚方法(AGNES),自上而下的分裂方法(DIANA)  
                基于密度的聚类:DBSACN,OPTICS,BIRCH(CF-Tree), CURE 
                基于网格的方法:STING,WaveCluster   
                基于模型的聚类:EM,SOM,COBWEB)
    
25. 推荐系统(基于内容的实现;基于协同过滤(CF)的实现)

26. 深度学习(Deep Learning)常见算法:受限波尔兹曼机(RBN)、深度信念网络(DBN)、
                                                                     卷积神经网络(CNN)、堆栈式自动编码器(Stacked Auto-encoders)
                                                       






















阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u011086367/article/details/49906031
上一篇C++:如何用clock()和头文件ctime来创建延迟循环
下一篇LeetCode 1: Two Sum
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭