1.lambda表达式的定义
python 使用 lambda 来创建匿名函数
lambda只是一个表达式,函数体比def简单很多。
lambda的主体是一个表达式,而不是一个代码块。仅仅能在lambda表达式中封装有限的逻辑进去
lambda函数拥有自己的命名空间,且不能访问自有参数列表之外或全局命名空间里的参数。
虽然lambda函数看起来只能写一行,却不等同于C或C++的内联函数,后者的目的是调用小函数时不占用栈内存从而增加运行效率。
2.语法
lambda函数的语法只包含一个语句,如下:
lambda [arg1 [,arg2,.....argn]]:expression
3.不同场景下的使用
1) 基本使用格式
#!/usr/bin/python
# -*- coding: UTF-8 -*-
# 可写函数说明
sum = lambda arg1, arg2: arg1 + arg2;
# 调用sum函数
print("相加后的值为 : ", sum(10, 20))
print("相加后的值为 : ", sum(20, 20))
2) lambda在Python3中与全局函数filter, map, reduce的使用
# -*- coding: UTF-8 -*-
from functools import reduce
foo = [2, 18, 9, 22, 17, 24, 8, 12, 27]
filter_result = filter(lambda x: x % 3 == 0, foo)
print("filter result")
for item in filter_result:
print(item)
map_result = map(lambda x: x * 2 + 10, foo)
print("map result")
for item in map_result:
print(item)
print(map_result)
print(reduce(lambda x, y: x + y, foo))
运行结果:
filter() 函数
用于过滤序列,过滤掉不符合条件的元素,返回由符合条件元素组成的新列表,序列的每个元素作为参数传递给函数进行判断,然后返回 True 或 False,最后将返回 True 的元素放到新列表中
语法:
filter(function, iterable)
参数:function -- 判断函数 iterable -- 可迭代对象
map() 函数
Map()函数会根据提供的函数对指定序列做映射, map() 函数语法:
map(function, iterable, ...)
参数:function -- 函数 iterable -- 一个或多个序列
返回值:
Python 2.x 返回列表。
Python 3.x 返回迭代器。
示例:
map(lambda x: x ** 2, [1, 2, 3, 4, 5]) # 使用 lambda 匿名函数 [1, 4, 9, 16, 25]
# 提供了两个列表,对相同位置的列表数据进行相加
>>> map(lambda x, y: x + y, [1, 3, 5, 7, 9], [2, 4, 6, 8, 10])
[3, 7, 11, 15, 19]
reduce() 函数
在 python 2 是内置函数, 从python 3 开始移到了 functools 模块
从左到右对一个序列的项累计地应用有两个参数的函数,以此合并序列到一个单一值。
语法:
reduce(function, sequence[, initial])
返回结果:
value(一合并的值)
示例:
reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) 计算的就是((((1+2)+3)+4)+5)。
如果提供了 initial 参数,计算时它将被放在序列的所有项前面,如果序列是空的,它也就是计算的默认结果值了
3)lambda表达式后直接传参
print((lambda x,y: x if x> y else y)(101,102))
4) 嵌套使用
#lambda嵌套到普通函数中,lambda函数本身做为return的值
def increment(n): # 定义函数
return lambda x: x+n
f=increment(4) # 通过函数定义lamba匿名函数相当于:lambda x: x+4
print(f(2)) # 调用匿名函数
运行结果:
6
其他形式格式使用基本都符合以上原理,大同小异