【24年新算法故障诊断】基于FVIM-DBN四向量优化深度置信网络的故障诊断(Matlab代码,评估指标全,出图多)

本文采用四向量优化算法( FVIM,2024年新算法)优化深度置信网络DBN的超参数,形成FVIM-DBN故障诊断模型,以进一步提升其在数据分类任务中的性能。

深度置信网络(DBN)是经典强大的深度神经网络,是一种具有多个隐藏层的前馈深度神经网络。它由若干堆叠的受限玻尔兹曼机(Restricted Boltzmann Machines,RBM)组成。DBN的预训练阶段使用无监督学习算法,如对比散度算法(Contrastive Divergence),对每个RBM进行训练,以逐层地构建网络。在预训练完成后,可以使用监督学习算法,如反向传播算法(Backpropagation),对整个网络进行反向微调。深度置信网络DBN是一种强大的机器学习模型,常用于数据分类和回归预测任务。为了进一步提高DBN的性能,可以利用智能优化算法进行超参数调优。

四向量优化算法(Four Vector Intelligent Metaheuristic, FVIM)是一种新型的元启发式算法(智能优化算法),灵感来源于四种向量的数学建模,算法简单高效,只有四个公式,原理清晰,通俗易懂,是一种全局搜索能力强、收敛速度快的优化算法!该成果由Hussam N. Fakhouri于2024年4月发表在SCI期刊《COMPUTING》上!

运行效果和数据样式展示

本文采用Matlab编写了FVIM-DBN故障诊断模型代码,代码注释详细,编写逻辑清晰易懂,可一键运行,数据集采用excel数据形式,方便替换数据集。适合新手学习和SCI建模使用。

评价指标全面包括精确度、召回率、精确率、F1分数)进行对比分析,出图包括SCI风格混淆矩阵、故障诊断分类对比图、适应度迭代曲线等进行可视化分析,使用起来简单方便,直接替换成自己的数据即可生成美观图形用于写作。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值