class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums) {
vector<vector<int>> res;
if(nums.size()<=0) return res;
sort(nums.begin(),nums.end());//先排序
for(int i=0;i<nums.size();i++){
if(i>0 && nums[i]==nums[i-1]) continue;
int k = nums.size()-1;//从后往前走
for(int j=i+1;j<nums.size();j++){
if(j>i+1 && nums[j]==nums[j-1]) continue;
while(j<k && nums[k]+nums[j]+nums[i]>0){
k--;//nums[i]<nums[j]<nums[k]
}
if(j==k) break;
if(nums[k]+nums[j]+nums[i]==0)
res.push_back({nums[i],nums[j],nums[k]});
}
}//
return res;
}
};
暴力算法,复杂度O(n^3),超时,最后我们还需要去重复等,使用排序方法,从小到大排序数组,然后依次确定第一个数,第二个数,第三个数,通过有序限制来防止重复,即我们要求三个数nums[i]<nums[j]<nums[k]:
(1)先排序数组
(2)循环找第一个数,下标记为i,范围在0-n-1;如果当前i下标的数等于前面i-1的数,那么就跳出本次循环,因为在i-1步之前,我们已经考虑过选择这个数作为第一个数了。
(3)确定第二个数,下标记为j,范围在i+1-n-1;同样的如果当前j下标的数等于前面j-1的数,那么就跳出本次循环,因为在j-1步之前,我们已经考虑过选择这个数作为第二个数了。
(4)查找第三个使得求和为0的数是否存在,下标记为j,范围是j+1到n-1;其实第二个数和第三个数是并列来找的,一次循环i中,k是从末尾n-1开始往数组头部移动,j是从i+1开始往数组尾部移动,在循环j内,当j<k,并且三个数之和大于0的时候,k--,往左移动,那么跳出循环时候,只有两种情况,j==k或者求和小于等于0,如果j==k说明没找到,如果求和等于0,说明找到了,把三个数组一个vector加入结果集合res,如果求和小于0,说明没必要再往左移动k了,因为排序后的前面求和只会更小。
(5)这里面去重复是通过判断当前下标与前一个元素是不是相当来做的,相当,就不需要做本次循环,当前面两个数都确定了,使得求和为0的第三个数也就确定了,所以从后往前找是否存在。