auc-终于理解它

本文介绍了模型评价指标,包括准确率、召回率、精确率、F1score和AUC。通过混淆矩阵解释了这些指标的含义,特别讨论了精准率与召回率之间的矛盾,并介绍了F-score作为调和精准率与召回率的指标。文章预告将深入探讨AUC的概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

模型评价指标有几种,面试应该是必考了:准确率、召回率、精准率、F1score、auc。

先引入混淆矩阵,纵轴是预测情况,阴/阳,横轴是真实标签,阴/阳

预测/真实标签
TN(真阴):本来阴,预测阴 FN(假阴):本来阳,预测阴
FP (假阳):本来阴,预测阳

TP (真阳):本来阳,预测阳

准确率=TP+TN/all   所有样本中预测正确的比例

召回率=TP/TP+FN ,所有正样本中预测为正样本的比例,又叫查全率

精确率=TP/TP+FP ,预测为正样本中真正正样本的比例,又叫查准率,衡量正样本的准确率,而准确率既考虑正样本,又考虑负样本

精准率和召回率是矛盾的:为啥呢,举例,我要提高精准率,那么提高阈值,原来0.7判定为正样本&#

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值