模型评价指标有几种,面试应该是必考了:准确率、召回率、精准率、F1score、auc。
先引入混淆矩阵,纵轴是预测情况,阴/阳,横轴是真实标签,阴/阳
预测/真实标签 | 阴 | 阳 |
阴 | TN(真阴):本来阴,预测阴 | FN(假阴):本来阳,预测阴 |
阳 | FP (假阳):本来阴,预测阳 | TP (真阳):本来阳,预测阳 |
准确率=TP+TN/all 所有样本中预测正确的比例
召回率=TP/TP+FN ,所有正样本中预测为正样本的比例,又叫查全率
精确率=TP/TP+FP ,预测为正样本中真正正样本的比例,又叫查准率,衡量正样本的准确率,而准确率既考虑正样本,又考虑负样本
精准率和召回率是矛盾的:为啥呢,举例,我要提高精准率,那么提高阈值,原来0.7判定为正样本&#