机器学习之直推式迁移学习(Transductive Transfer Learning)

直推式迁移学习是利用源任务的知识提升目标任务性能的方法,假设目标任务的测试数据在训练时可用。它通过特征变换、联合训练、对齐分布和模型适应等方法,改善目标领域的预测性能。DANN是其中一种常见方法,通过域对抗训练实现源领域和目标领域数据分布的对齐。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

直推式迁移学习(Transductive Transfer Learning)是一种特殊的迁移学习方法,它主要关注的是在特定的目标任务上的表现,通过利用源任务的知识来提高目标任务的性能。与传统的迁移学习不同,直推式迁移学习假设目标任务的测试数据在训练过程中是可用的,并利用这些数据来改进模型的泛化能力。

直推式迁移学习的特点

  1. 目标:提高目标领域无标注数据的预测性能。
  2. 数据可用性:目标领域的无标注数据在训练阶段可用。
  3. 假设:目标领域的数据分布与源领域的数据分布存在某种关系(例如相似或相关)。
  4. 方法:通过源领域的标注数据和目标领域的无标注数据的共同训练,来优化模型,使其能够更好地适应目标领域。

主要概念

  1. 源任务(Source Task):拥有丰富标注数据的任务。
  2. 目标任务(Target Task):标注数据较少或没有标注数据的任务,但目标任务的测试数据在训练时是可用的。
  3. 训练数据(Training Dataÿ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

贾斯汀玛尔斯

愿我的经历曾为你指明方向

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值