直推式迁移学习(Transductive Transfer Learning)是一种特殊的迁移学习方法,它主要关注的是在特定的目标任务上的表现,通过利用源任务的知识来提高目标任务的性能。与传统的迁移学习不同,直推式迁移学习假设目标任务的测试数据在训练过程中是可用的,并利用这些数据来改进模型的泛化能力。
直推式迁移学习的特点
- 目标:提高目标领域无标注数据的预测性能。
- 数据可用性:目标领域的无标注数据在训练阶段可用。
- 假设:目标领域的数据分布与源领域的数据分布存在某种关系(例如相似或相关)。
- 方法:通过源领域的标注数据和目标领域的无标注数据的共同训练,来优化模型,使其能够更好地适应目标领域。
主要概念
- 源任务(Source Task):拥有丰富标注数据的任务。
- 目标任务(Target Task):标注数据较少或没有标注数据的任务,但目标任务的测试数据在训练时是可用的。
- 训练数据(Training Dataÿ