openai,deepseek等语言大模型,如何完成问答的

语言大模型(如OpenAI的GPT系列,DeepSeek等)完成问答任务的实现流程涉及多个步骤,包括数据处理、模型训练、推理、生成回答等环节。以下是详细的实现流程:

1. 数据准备与预处理

  • 数据收集:首先,收集大量文本数据,包括书籍、文章、网页内容、对话记录等,这些数据用于训练模型。数据通常包括各种主题和领域,以使模型能够处理不同类型的问答。
  • 数据清洗:去除无关或噪声数据,确保数据质量。比如去除乱码、重复数据或无意义的内容。
  • 分词与标记化:将文本拆分成更小的单元(如单词或子词)。语言模型通常使用字、词或子词级别的标记化方式来处理输入。
  • 数据增强:通过不同的方式扩充训练数据集,提升模型的泛化能力。

2. 模型架构设计

  • Transformer架构:目前许多语言模型(如GPT-4、DeepSeek等)基于Transformer架构。Transformer由两大核心部分构成:编码器(Encoder)和解码器&#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

贾斯汀玛尔斯

愿我的经历曾为你指明方向

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值