提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
文章目录
前言
开学已经快三周了,还在焦虑中读论文~今天是第19天
一、大模型 AI 在城市轨道交通中的应用探讨
1.大模型AI技术发展历程:
采用启发式规则的自然语言处理、基于传统统计学习方法的自然语言处理、采用神经网络进行建模的自然语言处理、采用基础模型的自然语言处理以及基于大语言模型的自然语言处理。 其中后两种均为预训练语言模型,目前正处于大语言模型阶段。
二、交通语言综述化研究
三、面向城市交通的动态知识图谱综述 ——构建、表示与应用
示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。
1.时空知识图谱
四、基于机器学习的交通流预测方法综述
1.交通流预测方法
交通流预测是利用历史和实时交通数据信息来预测未来一段时间内指定道路或区域的交通状况,预测内容一般包括交通流量、速度、密度(或占有率)、行程时间等反映交通状态的变量。其中,单位时间内通过某断面交通流量的统计和计算最为常见。
交通流预测的主要挑战在于复杂的耦合关系,包括路网结构的拓扑连接及其不断变化的时空特征:在时间上,交通数据具有较强的时变性和周期性,如早高峰晚高峰、周中周末等;在空间上,路网中相邻节点之间具有很强的相关性,直接相互影响,非相邻节点也具有基于交通流模式的起点-终点(origin-destination,OD)的隐式空间相关性。
基于机器学习的交通流预测问题可以分为2类 ,分别是断面交通流预测和区域交通流预测,断面交通流预测包含了传统机器学习方法、 递归神经网络和混合方法 ,区域交通流预测包含了卷积神经网络、图卷积神经网络和融合多因素方法。
交通数据集码一码!
总结
以上就是今天要讲的内容,本文仅仅简单介绍了几篇中文综述。