SHapley值和XGBoost---水论文合集 1

甜栗与玫瑰 2024年10月12日 18:22 陕西

图片

分享读博心路历程

在变强变美的路上奋进

图片

灵感突袭

夏普利值!!SHAP(SHapley Additive exPlanations)是一种解释机器学习模型预测的方法,它基于博弈论中的Shapley值概念来为模型的每个特征分配重要性值,从而解释模型的预测过程。SHAP值的核心思想是将模型预测视为一个合作博弈,每个特征都是博弈中的一个参与者,通过计算每个特征对最终预测结果的贡献,SHAP可以量化各个特征的重要性,并提供一致且公平的解释。

SHAP值的主要特点包括:

1. **模型无关性**:SHAP可以应用于任何机器学习模型,包括线性回归、决策树、随机森林、梯度提升模型和神经网络等。

2. **局部准确性**:SHAP值能够准确反映每个特征对单个预测的贡献。

3. **一致性**:当一个特征的实际影响增加时,其SHAP值不会减少。

4. **可加性**:所有特征的SHAP值之和等于模型预测值与平均预测值之间的差异。

5. **理论基础**:SHAP基于坚实的博弈论基础,提供了一种统一的解释框架。

SHAP值的计算过程包括:

1. 对于每个预测,SHAP考虑所有可能的特征子集。

2. 对于每个子集,计算有无某个特征时的预测差异。

3. 将这些差异加权平均,得到该特征的SHAP值。

4. 重复以上步骤,计算所有特征的SHAP值。

SHAP值在交通领域的应用可以用于解释自动驾驶汽车的决策过程,例如在自动超车决策算法中,SHAP值可以帮助我们理解哪些因素(如车速、车距、道路状况等)对超车决策有最大的影响。通过分析SHAP值,研究人员和工程师可以更好地理解模型的行为,优化模型性能,并提高自动驾驶系统的透明度和可信度。

此外,SHAP提供了多种可视化方法,如摘要图(Summary Plot)、依赖图(Dependence Plot)、力图(Force Plot)和决策图(Decision Plot),这些工具可以帮助研究人员和决策者直观地理解模型的预测结果和特征的重要性。

图片

相关论文

图片

1-使用局部解释方法从机器学习模型中提取空间效应:以 SHAP 和 XGBoost 为例,Computers, Environment and Urban Systems - X-MOL

2-论文笔记:Extracting spatial effects from machine learning model using local interpretation method_由于机器学习模型(例如 ann 模型)固有的空间自相关,空间数据可能会给机器学习模型-CSDN博客

文章 "Extracting spatial effects from machine learning model using local interpretation method: An example of SHAP and XGBoost" 发表在 "Computers, Environment and Urban Systems" 期刊上。该期刊的最新影响因子为8.41 。

由于可解释人工智能 (XAI) 的最新进展,机器学习和人工智能 (ML/AI),以前被认为是黑盒方法,正变得更具可解释性。特别是,局部解释方法,如 SHAP(SHapley Additive exPlanations)提供了灵活建模、解释和可视化复杂地理现象和过程的机会。在本文中,我们使用 SHAP 来解释 XGBoost(eXtreme Gradient Boosting)作为一个例子来演示如何从机器学习模型中提取空间效应。我们进行了模拟实验,在参数级别将 SHAP 解释的 XGBoost 与空间滞后模型 (SLM) 和多尺度地理加权回归 (MGWR) 进行了比较。结果表明,XGBoost 估计的空间效应与 SLM 和 MGWR 模型中的空间效应相似。芝加哥网约车建模的一个经验性例子展示了 SHAP 与真实数据集的效用。本文中的示例和证据表明,局部解释的机器学习模型是空间统计模型的良好替代品,并且在复杂的空间和非空间效应(例如非线性、相互作用)共存且未知时表现更好。

启发说明

  SHAP(SHapley Additive exPlanations)和XGBoost(eXtreme Gradient Boosting)在提取空间效应方面的不同主要体现在以下几个方面:

1. **解释性**:SHAP值提供了一种解释模型预测的方法,可以量化每个特征对预测结果的贡献。而XGBoost本身是一个高效的机器学习算法,擅长处理大规模数据,但它本身并不提供内建的解释性。不过,XGBoost可以与SHAP结合使用,通过SHAP值来解释XGBoost模型的预测。

2. **空间效应提取**:SHAP允许从XGBoost模型中提取空间效应,例如可以分析模型是如何利用地理坐标信息来进行预测的。通过SHAP值,可以可视化数据地理坐标的交互效应,并生成与空间统计模型中一致的参数。

3. **模型类型**:XGBoost是一种基于树的集成学习方法,它通过构建多个决策树来进行预测。而SHAP值是一种解释模型预测的方法,它不依赖于特定的模型类型,可以应用于任何机器学习模型,包括XGBoost。

4. **应用场景**:XGBoost通常用于解决分类和回归问题,尤其是在数据量较大的情况下。SHAP值则更多地用于模型解释和可视化,帮助理解模型是如何做出决策的。

5. **空间统计模型的比较**:SHAP值可以与空间统计模型(如空间滞后模型SLM和多尺度地理加权回归MGWR)进行比较,以验证机器学习模型在提取空间效应方面的有效性。

在交通领域的应用中,结合SHAP和XGBoost可以帮助研究人员和实践者更好地理解交通模型的决策过程,例如在交通流量预测、出行行为分析、交通安全监控等方面。通过SHAP值,可以识别出对交通模型预测结果影响最大的特征,从而为交通规划和管理提供数据支持。

### 使用 SHAP 对 XGBoost 进行模型解释 为了更好地理解 XGBoost 模型的工作原理以及各个特征对于预测结果的影响,可以利用 SHAP (SHapley Additive exPlanations) 方法来实现这一目标。创建 `TreeExplainer` 实例能够帮助解释基于树结构的机器学习算法,比如 XGBoost。 通过下面这段 Python 代码展示了如何初始化一个 `shap.TreeExplainer` 并计算输入数据集上每个样本对应的 SHAP : ```python import shap import xgboost as xgb # 训练好的XGBoost模型对象假设名为model, 特征矩阵为X explainer = shap.TreeExplainer(model) shap_values = explainer.shap_values(X) ``` 上述代码片段中定义了一个 `TreeExplainer` 来处理给定的 XGBoost 模型,并且针对整个训练集中每一个实例都计算出了相应的 SHAP value[^1]。 这些 SHAP values 可视化之后可以帮助直观地看到哪些因素最影响最终的结果输出,从而提供关于模型行为的重要见解。例如绘制 summary plot 或 force plots 都是非常有效的可视化手段之一。 ```python # Summary Plot 展示全局重要性的特性排名图 shap.summary_plot(shap_values, X) # Force Plot 显示单个预测的具体分解情况 shap.initjs() shap.force_plot(explainer.expected_value, shap_values[0,:], X.iloc[0,:]) ``` 以上命令分别生成了两种不同类型的图表用来辅助分析:一个是汇总图(summary plot),它总结了所有测试样例的信息;另一个是力导向布局图(force plot),专门用于展示特定观测下的各变量作用效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值