copy(dist.begin(), dist.end(), ostream_iterator<int>(cout, " ")); cout << endl; 这句话是什么意思

ostream_iterator是流迭代器。
流迭代器是标准模板库中的。因此是类模板。
ostream_iterator<int>
指定了类型,就是迭代器读写的类型。
通过这个流迭代器可以把你要输入的写入到指定的流中。
cout就是指定的流。就是标准输出。
可以改成一个输出流就可以,比如一个文件。
通俗的一点说,你把它看成一个指向输出流的指针。通过这个指针你可以把东西写的输出流中。
copy (v.begin(),v.end(),output);
这个意思就是说,把向量V中的数据放到cout输出流中,通过流迭代器output.
ostream_iterator<int> output(cout ,"*");
这个的意思说,放到输出流的时候,没放一个整数,就末尾添加一个*.

你可以运行下程序加深理解
#include <vector>
#include <iostream>
#include <iterator>
using namespace std;

int main()
{
    vector<int> v;
 v.push_back(1);
 v.push_back(2);
 ostream_iterator<int> output(cout,"*");
 copy(v.begin(),v.end(),output);
 return 0;
}
#include<iostream> #include<vector> #include<iterator> #include<limits.h> #include<string> using namespace std; int n; //顶点个数 vector<vector<int> >g; //g:图(graph)(用邻接矩阵(adjacent matrix)表示) int s; //s:源点(source) vector<bool>known; //known:各点是否知道最短路径 vector<int>dist; //dist:源点 s 到各点的最短路径长度 vector<int>pre; //prev 各点的最短路径的前一顶点 void Dijkstra() { //贪心算法 known.assign(n,false); dist.assign(n,INT_MAX); pre.resize(n); //初始化 known、dist、prev dist[s]=0; //初始化源点 s 到自身的路径 for(;;) { int min=INT_MAX,v=s; for(int i=0; i<n; ++i) if(!known[i]&&min>dist[i]) min=dist[i],v=i; //寻找未知的最短路径的顶点 v if(min==INT_MAX)break; //如果找不到,退出 known[v]=true; for(int w=0; w<n; ++w) //遍历所有 v 指向的顶点 w if(!known[w]&&g[v][w]<INT_MAX && dist[w]>dist[v]+g[v][w]) //调整顶点 w 的最短路径长度 dist 和最短路径的前一顶点 prev dist[w]=dist[v]+g[v][w],pre[w]=v; } } void Print_SP(int v) { if(v!=s)Print_SP(pre[v]); cout<<v<<" "; } int main() { n=5; g.assign(n,vector<int>(n,INT_MAX)); //构建图 g[0][1]=10; g[0][3]=30; g[0][4]=100; g[1][2]=50; g[2][4]=10; g[3][2]=20; g[3][4]=60; s=0; Dijkstra(); copy(dist.begin(),dist.end(),ostream_iterator<int>(cout," ")); cout<<endl; for(int i=0; i<n; ++i) if(dist[i]!=INT_MAX) { cout<<s<<"->"<<i<<":"; Print_SP(i); cout<<endl; } return 0; }每行代码什么意思
最新发布
06-11
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值