基于hadoop与spark的大数据分析实战——第二章、Spark部署与安装

本文详细介绍了Spark的部署实践,包括手动配置Scala,从Apache官网下载并匹配版本的Spark,配置环境变量,以及启动Spark集群。在部署过程中,需要注意Scala与Spark版本的匹配,集群防火墙、节点间时钟同步和执行权限等问题。成功启动后,可以通过localhost:8080查看集群监测界面。
摘要由CSDN通过智能技术生成

第二章、Spark部署与安装


1部署实践

1.1手动配置Scala

之所以安装scala,是由于spark上使用的为Scala语言。当然也能运行R、Java、Python,安装过程如下。将scala-2.10.4分发到各节点的~/Cloud目录下

$./auto_sync_simple.sh scala-2.10.4~/Cloud

修改/etc/profile文件,在该文件最后追加如下信息

exportSCALA_HOME=/home/hadoop/Cloud/scala-2.10.4

exportPATH=$SCALA_HOME/bin:$PATH

更新profile文件

$source /etc/profile

1.2配置Spark

到官网下载spark

地址:http://spark.apache.org/downloads.html

注意版本的匹配。本教程使用1.3.0版本的spark。

将压缩包移动到目标文件夹并解压:

$mv spark-1.3.0-bin-hadoop2.4.tgz ~/Cloud

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值