【AI原理解析】—支持向量机原理

目录

1. 支持向量机(SVM)概述

2. 超平面与支持向量

3. 间隔最大化

4. 优化问题

5. 核函数

6. 总结


1. 支持向量机(SVM)概述

  • 定义:支持向量机是一种监督学习模型,主要用于数据分类问题。其基本思想是通过一个超平面来分割数据点,使得不同类别的数据点位于超平面的两侧。
  • 分类:支持向量机主要分为三类:线性可分支持向量机、线性支持向量机和非线性支持向量机。

2. 超平面与支持向量

  • 超平面:在n维空间中,超平面是一个n-1维的子空间。在二维空间中,它是一个直线;在三维空间中,它是一个平面。超平面可以表示为 w^T * x + b = 0,其中w是法向量,b是截距,x是样本点。
  • 支持向量:距离超平面最近的样本点称为支持向量。这些点对确定超平面的位置起着决定性作用。

3. 间隔最大化

  • 函数间隔:对于给定的训练集和超平面,样本点 (x_i, y_i) 到超平面的函数间隔为 r_i = y_i(wT * x_i + b)。但是,当w和b成比例变化时,函数间隔也会成比例变化。
  • 几何间隔:为了消除这种影响,引入了几何间隔。样本点 (x_i, y_i) 到超平面的几何间隔为 γ_i = y_i((w / ||w||) * x_i + b / ||w||)。其中 ||w|| 是w的范数。
  • 目标:SVM的目标是找到一个超平面,使得训练集上所有样本点的几何间隔最大。这可以转化为一个优化问题,即最大化几何间隔。

4. 优化问题

  • 优化目标:最小化 ||w||2 / 2,同时满足约束条件 y_i(wT * x_i + b) ≥ 1(对于所有样本点)。这是一个凸二次规划问题。
  • 求解:通过拉格朗日乘子法将原始问题转化为对偶问题,并利用SMO算法求解。最终得到的是w和b的最优解,从而确定最优超平面。

5. 核函数

  • 非线性分类:对于非线性可分的数据,SVM通过引入核函数将数据映射到高维空间,使得数据在高维空间中线性可分。
  • 常用核函数:包括线性核、多项式核、高斯核等。选择合适的核函数对于SVM的性能至关重要。

6. 总结

  • 支持向量机通过找到一个最优超平面来实现对数据的分类。该超平面由支持向量确定,并且使得训练集上所有样本点的几何间隔最大。
  • 对于非线性可分的数据,SVM通过引入核函数将数据映射到高维空间,实现非线性分类。
  • SVM具有泛化能力强、对高维数据有效等优点,在许多领域都有广泛的应用。
  • 6
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

coolkidlan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值