- 博客(7)
- 收藏
- 关注
原创 机器学习决策树类的基础知识
一般把问题分解成子问题,求子问题的最优解,再把子问题的最优解进行合并,形成总问的解。在侯选属性集合中,对于某属性A,计算任意属性划分后的gini指数,选择划分后基尼指数最小的属性为最优划分属性。树类结构常用到贪心算法,如Prim算法、Kruskal算法、Huffman算法等等。Gini指数越小表示集合中被选中的样本被分错的概率越小,即纯度越高。1、基尼指数:表示在样本集合中一个随机选中的样本被分错的概率。H(D)的值越小,则D的纯度越高。简单来讲,就是,样本被选中的概率 * 样本被分错的概率。
2024-03-20 22:14:18 300
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人