Spring Cache使用

记录下自己项目在用的Spring Cache的使用方式。
Spring的抽象已经做得够好了,适合于大多数场景,非常复杂的就需要自己AOP实现了。
Spring官网的文档挺不错的,但是对Cache这块的介绍不是很详细,结合网上大牛的博文,汇总下文。

缓存概念

缓存简介

缓存,我的理解是:让数据更接近于使用者;工作机制是:先从缓存中读取数据,如果没有再从慢速设备上读取实际数据(数据也会存入缓存);缓存什么:那些经常读取且不经常修改的数据/那些昂贵(CPU/IO)的且对于相同的请求有相同的计算结果的数据。如CPU—L1/L2—内存—磁盘就是一个典型的例子,CPU需要数据时先从 L1/L2中读取,如果没有到内存中找,如果还没有会到磁盘上找。还有如用过Maven的朋友都应该知道,我们找依赖的时候,先从本机仓库找,再从本地服务器仓库找,最后到远程仓库服务器找;还有如京东的物流为什么那么快?他们在各个地都有分仓库,如果该仓库有货物那么送货的速度是非常快的。

缓存命中率

即从缓存中读取数据的次数 与 总读取次数的比率,命中率越高越好:
命中率 = 从缓存中读取次数 / (总读取次数[从缓存中读取次数 + 从慢速设备上读取的次数])
Miss率 = 没有从缓存中读取的次数 / (总读取次数[从缓存中读取次数 + 从慢速设备上读取的次数])

这是一个非常重要的监控指标,如果做缓存一定要健康这个指标来看缓存是否工作良好;

缓存策略

Eviction policy

移除策略,即如果缓存满了,从缓存中移除数据的策略;常见的有LFU、LRU、FIFO:

  • FIFO(First In First Out):先进先出算法,即先放入缓存的先被移除;
  • LRU(Least Recently Used):最久未使用算法,使用时间距离现在最久的那个被移除;
  • LFU(Least Frequently Used):最近最少使用算法,一定时间段内使用次数(频率)最少的那个被移除;

TTL(Time To Live )

存活期,即从缓存中创建时间点开始直到它到期的一个时间段(不管在这个时间段内有没有访问都将过期)

TTI(Time To Idle)

空闲期,即一个数据多久没被访问将从缓存中移除的时间。

到此,基本了解了缓存的知识,在Java中,我们一般对调用方法进行缓存控制,比如我调用”findUserById(Long id)”,那么我应该在调用这个方法之前先从缓存中查找有没有,如果没有再掉该方法如从数据库加载用户,然后添加到缓存中,下次调用时将会从缓存中获取到数据。

自Spring 3.1起,提供了类似于@Transactional注解事务的注解Cache支持,且提供了Cache抽象;在此之前一般通过AOP实现;使用Spring Cache的好处:

  • 提供基本的Cache抽象,方便切换各种底层Cache;
  • 通过注解Cache可以实现类似于事务一样,缓存逻辑透明的应用到我们的业务代码上,且只需要更少的代码就可以完成;
  • 提供事务回滚时也自动回滚缓存;
  • 支持比较复杂的缓存逻辑;

对于Spring Cache抽象,主要从以下几个方面学习:

  • Cache API及默认提供的实现
  • Cache注解
  • 实现复杂的Cache逻辑
缓存简介开涛的博客

Spring Cache简介

Spring3.1开始引入了激动人心的基于注释(annotation)的缓存(cache)技术,它本质上不是一个具体的缓存实现方案(例如EHCache 或者 OSCache),而是一个对缓存使用的抽象,通过在既有代码中添加少量它定义的各种 annotation,即能够达到缓存方法的返回对象的效果。

Spring的缓存技术还具备相当的灵活性,不仅能够使用 SpEL(Spring Expression Language)来定义缓存的key和各种condition,还提供开箱即用的缓存临时存储方案,也支持和主流的专业缓存例如EHCache、 memcached集成。

其特点总结如下:

  • 通过少量的配置 annotation 注释即可使得既有代码支持缓存
  • 支持开箱即用 Out-Of-The-Box,即不用安装和部署额外第三方组件即可使用缓存
  • 支持 Spring Express Language,能使用对象的任何属性或者方法来定义缓存的 key 和 condition
  • 支持 AspectJ,并通过其实现任何方法的缓存支持
  • 支持自定义 key 和自定义缓存管理者,具有相当的灵活性和扩展性
Spring Cache 介绍Spring Cache 介绍 - Rollen Holt - 博客园

API介绍

Cache接口

理解这个接口有助于我们实现自己的缓存管理器

package org.springframework.cache;

public interface Cache {

	/**
	 * 缓存的名字
	 */
	String getName();

	/**
	 * 得到底层使用的缓存
	 */
	Object getNativeCache();

	/**
	 * 根据key得到一个ValueWrapper,然后调用其get方法获取值 
	 */
	ValueWrapper get(Object key);

	/**
	 * 根据key,和value的类型直接获取value  
	 */
	<T> T get(Object key, Class<T> type);

	/**
	 * 存数据
	 */
	void put(Object key, Object value);

	/**
	 * 如果值不存在,则添加,用来替代如下代码
	 * Object existingValue = cache.get(key);
	 * if (existingValue == null) {
	 *     cache.put(key, value);
	 *     return null;
	 * } else {
	 *     return existingValue;
	 * }
	 */
	ValueWrapper putIfAbsent(Object key, Object value);

	/**
	 * 根据key删数据
	 */
	void evict(Object key);

	/**
	 * 清空数据
	 */
	void clear();

	/**
	 * 缓存值的Wrapper  
	 */
	interface ValueWrapper {
		/**
		 * 得到value
		 */
		Object get();
	}
}

默认实现

默认已经实现了几个常用的cache
位于spring-context-x.RELEASE.jar和spring-context-support-x.RELEASE.jar的cache目录下

  • ConcurrentMapCache:基于java.util.concurrent.ConcurrentHashMap
  • GuavaCache:基于Google的Guava工具
  • EhCacheCache:基于Ehcache
  • JCacheCache:基于javax.cache.Cache(不常用)

CacheManager

用来管理多个cache

package org.springframework.cache;

import java.util.Collection;

public interface CacheManager {

	/**
	 * 根据cache名获取cache
	 */
	Cache getCache(String name);

	/**
	 * 得到所有cache的名字
	 */
	Collection<String> getCacheNames();

}

默认实现

对应Cache接口的默认实现

  • ConcurrentMapCacheManager / ConcurrentMapCacheFactoryBean
  • GuavaCacheManager
  • EhCacheCacheManager / EhCacheManagerFactoryBean
  • JCacheCacheManager / JCacheManagerFactoryBean

CompositeCacheManager

用于组合CacheManager,可以从多个CacheManager中轮询得到相应的Cache

<bean id="cacheManager" class="org.springframework.cache.support.CompositeCacheManager">
    <property name="cacheManagers">
        <list>
            <ref bean="concurrentMapCacheManager"/>
            <ref bean="guavaCacheManager"/>
        </list>
    </property>
    <!-- 都找不到时,不返回null,而是返回NOP的Cache -->
    <property name="fallbackToNoOpCache" value="true"/>
</bean>

事务

除GuavaCacheManager外,其他Cache都支持Spring事务,如果注解方法出现事务回滚,对应缓存操作也会回滚

缓存策略

都是Cache自行维护,Spring只提供对外抽象API

Cache注解

每个注解都有多个参数,这里不一一列出,建议进入源码查看注释

启用注解

<cache:annotation-driven cache-manager="cacheManager"/> 

@CachePut

写数据

@CachePut(value = "addPotentialNoticeCache", key = "targetClass + '.' + #userCode")
public List<PublicAutoAddPotentialJob.AutoAddPotentialNotice> put(int userCode, List<PublicAutoAddPotentialJob.AutoAddPotentialNotice> noticeList) {
    LOGGER.info("缓存({})的公客自动添加潜在客的通知", userCode);
    return noticeList;
}

@CacheEvict

失效数据

@CacheEvict(value = "addPotentialNoticeCache", key = "targetClass + '.' + #userCode")
public void remove(int userCode) {
    LOGGER.info("清除({})的公客自动添加潜在客的通知", userCode);
}

@Cacheable

这个用的比较多
用在查询方法上,先从缓存中读取,如果没有再调用方法获取数据,然后把数据添加到缓存中

@Cacheable(value = "kyAreaCache", key="targetClass + '.' + methodName + '.' + #areaId")
public KyArea findById(String areaId) {
    // 业务代码省略
}

运行流程

  1. 首先执行@CacheEvict(如果beforeInvocation=true且condition 通过),如果allEntries=true,则清空所有
  2. 接着收集@Cacheable(如果condition 通过,且key对应的数据不在缓存),放入cachePutRequests(也就是说如果cachePutRequests为空,则数据在缓存中)
  3. 如果cachePutRequests为空且没有@CachePut操作,那么将查找@Cacheable的缓存,否则result=缓存数据(也就是说只要当没有cache put请求时才会查找缓存)
  4. 如果没有找到缓存,那么调用实际的API,把结果放入result
  5. 如果有@CachePut操作(如果condition 通过),那么放入cachePutRequests
  6. 执行cachePutRequests,将数据写入缓存(unless为空或者unless解析结果为false);
  7. 执行@CacheEvict(如果beforeInvocation=false 且 condition 通过),如果allEntries=true,则清空所有

SpEL上下文数据

在使用时,#root.methodName 等同于 methodName

名称 位置 描述 示例
methodName root对象 当前被调用的方法名 #root.methodName
method root对象 当前被调用的方法 #root.method.name
target root对象 当前被调用的目标对象 #root.target
targetClass root对象 当前被调用的目标对象类 #root.targetClass
args root对象 当前被调用的方法的参数列表 #root.args[0]
caches root对象 当前方法调用使用的缓存列表(如@Cacheable(value={“cache1”, “cache2”})),则有两个cache #root.caches[0].name
argument name 执行上下文 当前被调用的方法的参数,如findById(Long id),我们可以通过#id拿到参数 #user.id
result 执行上下文 方法执行后的返回值(仅当方法执行之后的判断有效,如‘unless’,’cache evict’的beforeInvocation=false) #result

条件缓存

主要是在注解内用condition和unless的表达式分别对参数和返回结果进行筛选后缓存

@Caching

多个缓存注解组合使用

@Caching(
        put = {
                @CachePut(value = "user", key = "#user.id"),
                @CachePut(value = "user", key = "#user.username"),
                @CachePut(value = "user", key = "#user.email")
        }
)
public User save(User user) {

}

自定义缓存注解

把一些特殊场景的注解包装到一个独立的注解中,比如@Caching组合使用的注解

@Caching(
        put = {
                @CachePut(value = "user", key = "#user.id"),
                @CachePut(value = "user", key = "#user.username"),
                @CachePut(value = "user", key = "#user.email")
        }
)
@Target({ElementType.METHOD, ElementType.TYPE})
@Retention(RetentionPolicy.RUNTIME)
@Inherited
public @interface UserSaveCache {

}

@UserSaveCache
public User save(User user) {

}

示例

基于ConcurrentMapCache

自定义CacheManager

我需要使用有容量限制和缓存失效时间策略的Cache,默认的ConcurrentMapCacheManager没法满足
通过实现CacheManager接口定制出自己的CacheManager。
还是拷贝ConcurrentMapCacheManager,使用Guava的Cache做底层容器,因为Guava的Cache容器可以设置缓存策略

新增了exp、maximumSize两个策略变量
修改底层Cache容器的创建

下面只列出自定义的代码,其他的都是Spring的ConcurrentMapCacheManager的代码

import com.google.common.cache.CacheBuilder;
import org.springframework.cache.Cache;
import org.springframework.cache.CacheManager;
import org.springframework.cache.concurrent.ConcurrentMapCache;

import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.TimeUnit;

/**
 * 功能说明:自定义的ConcurrentMapCacheManager,新增超时时间和最大存储限制
 * 作者:liuxing(2015-04-13 18:44)
 */
public class ConcurrentMapCacheManager implements CacheManager {

    /**
     * 过期时间,秒(自定义)
     */
    private long exp = 1800;
    /**
     * 最大存储数量 (自定义)
     */
    private long maximumSize = 1000;

    public void setExp(long exp) {
        this.exp = exp;
    }

    public void setMaximumSize(long maximumSize) {
        this.maximumSize = maximumSize;
    }

    /**
     * 创建一个缓存容器,这个方法改写为使用Guava的Cache
     * @param name
     * @return
     */
    protected Cache createConcurrentMapCache(String name) {
        return new ConcurrentMapCache(name, CacheBuilder.newBuilder().expireAfterWrite(this.exp, TimeUnit.SECONDS)
                                                                     .maximumSize(this.maximumSize)
                                                                     .build()
                                                                     .asMap(), isAllowNullValues());
    }
}

初始化

xml风格

<!-- 启用缓存注解功能,这个是必须的,否则注解不会生效,指定一个默认的Manager,否则需要在注解使用时指定Manager -->
<cache:annotation-driven cache-manager="memoryCacheManager"/>

<!-- 本地内存缓存 -->
<bean id="memoryCacheManager" class="com.dooioo.ky.cache.ConcurrentMapCacheManager" p:maximumSize="2000" p:exp="1800">
    <property name="cacheNames">
        <list>
            <value>kyMemoryCache</value>
        </list>
    </property>
</bean>

使用

@Cacheable(value = "kyMemoryCache", key="targetClass + '.' + methodName")
public Map<String, String> queryMobiles(){
    // 业务代码省略
}


使用Memcached

一般常用的缓存当属memcached了,这个就需要自己实现CacheManager和Cache
注意我实现的Cache里面有做一些定制化操作,比如对key的处理

创建MemcachedCache

import com.dooioo.common.jstl.DyFunctions;
import com.dooioo.commons.Strings;
import com.google.common.base.Joiner;
import net.rubyeye.xmemcached.MemcachedClient;
import net.rubyeye.xmemcached.exception.MemcachedException;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.cache.Cache;
import org.springframework.cache.support.SimpleValueWrapper;

import java.util.concurrent.TimeoutException;

/**
 * 功能说明:自定义spring的cache的实现,参考cache包实现
 * 作者:liuxing(2015-04-12 13:57)
 */
public class MemcachedCache implements Cache {

    private static final Logger LOGGER = LoggerFactory.getLogger(MemcachedCache.class);

    /**
     * 缓存的别名
     */
    private String name;
    /**
     * memcached客户端
     */
    private MemcachedClient client;
    /**
     * 缓存过期时间,默认是1小时
     * 自定义的属性
     */
    private int exp = 3600;
    /**
     * 是否对key进行base64加密
     */
    private boolean base64Key = false;
    /**
     * 前缀名
     */
    private String prefix;

    @Override
    public String getName() {
        return name;
    }

    @Override
    public Object getNativeCache() {
        return this.client;
    }

    @Override
    public ValueWrapper get(Object key) {
        Object object = null;
        try {
            object = this.client.get(handleKey(objectToString(key)));
        } catch (TimeoutException e) {
            LOGGER.error(e.getMessage(), e);
        } catch (InterruptedException e) {
            LOGGER.error(e.getMessage(), e);
        } catch (MemcachedException e) {
            LOGGER.error(e.getMessage(), e);
        }

        return (object != null ? new SimpleValueWrapper(object) : null);
    }

    @Override
    public <T> T get(Object key, Class<T> type) {
        try {
            Object object = this.client.get(handleKey(objectToString(key)));
            return (T) object;
        } catch (TimeoutException e) {
            LOGGER.error(e.getMessage(), e);
        } catch (InterruptedException e) {
            LOGGER.error(e.getMessage(), e);
        } catch (MemcachedException e) {
            LOGGER.error(e.getMessage(), e);
        }

        return null;
    }

    @Override
    public void put(Object key, Object value) {
        if (value == null) {
//            this.evict(key);
            return;
        }

        try {
            this.client.set(handleKey(objectToString(key)), exp, value);
        } catch (TimeoutException e) {
            LOGGER.error(e.getMessage(), e);
        } catch (InterruptedException e) {
            LOGGER.error(e.getMessage(), e);
        } catch (MemcachedException e) {
            LOGGER.error(e.getMessage(), e);
        }
    }

    @Override
    public ValueWrapper putIfAbsent(Object key, Object value) {
        this.put(key, value);
        return this.get(key);
    }

    @Override
    public void evict(Object key) {
        try {
            this.client.delete(handleKey(objectToString(key)));
        } catch (TimeoutException e) {
            LOGGER.error(e.getMessage(), e);
        } catch (InterruptedException e) {
            LOGGER.error(e.getMessage(), e);
        } catch (MemcachedException e) {
            LOGGER.error(e.getMessage(), e);
        }
    }

    @Override
    public void clear() {
        try {
            this.client.flushAll();
        } catch (TimeoutException e) {
            LOGGER.error(e.getMessage(), e);
        } catch (InterruptedException e) {
            LOGGER.error(e.getMessage(), e);
        } catch (MemcachedException e) {
            LOGGER.error(e.getMessage(), e);
        }
    }

    public void setName(String name) {
        this.name = name;
    }

    public MemcachedClient getClient() {
        return client;
    }

    public void setClient(MemcachedClient client) {
        this.client = client;
    }

    public void setExp(int exp) {
        this.exp = exp;
    }

    public void setBase64Key(boolean base64Key) {
        this.base64Key = base64Key;
    }

    public void setPrefix(String prefix) {
        this.prefix = prefix;
    }

    /**
     * 处理key
     * @param key
     * @return
     */
    private String handleKey(final String key) {
        if (base64Key) {
            return Joiner.on(EMPTY_SEPARATOR).skipNulls().join(this.prefix, DyFunctions.base64Encode(key));
        }

        return Joiner.on(EMPTY_SEPARATOR).skipNulls().join(this.prefix, key);
    }

    /**
     * 转换key,去掉空格
     * @param object
     * @return
     */
    private String objectToString(Object object) {
        if (object == null) {
            return null;
        } else if (object instanceof String) {
            return Strings.replace((String) object, " ", "_");
        } else {
            return object.toString();
        }
    }

    private static final String EMPTY_SEPARATOR = "";

}

创建MemcachedCacheManager

继承AbstractCacheManager

import org.springframework.cache.Cache;
import org.springframework.cache.support.AbstractCacheManager;

import java.util.Collection;

/**
 * 功能说明:memcachedCacheManager
 * 作者:liuxing(2015-04-12 15:13)
 */
public class MemcachedCacheManager extends AbstractCacheManager {

    private Collection<Cache> caches;

    @Override
    protected Collection<? extends Cache> loadCaches() {
        return this.caches;
    }

    public void setCaches(Collection<Cache> caches) {
        this.caches = caches;
    }

    public Cache getCache(String name) {
        return super.getCache(name);
    }

}

初始化

<!-- 启用缓存注解功能,这个是必须的,否则注解不会生效,指定一个默认的Manager,否则需要在注解使用时指定Manager -->
<cache:annotation-driven cache-manager="cacheManager"/>

<!-- memcached缓存管理器 -->
<bean id="cacheManager" class="com.dooioo.ky.cache.MemcachedCacheManager">
    <property name="caches">
        <set>
            <bean class="com.dooioo.ky.cache.MemcachedCache" p:client-ref="ky.memcachedClient" p:name="kyAreaCache" p:exp="86400"/>
            <bean class="com.dooioo.ky.cache.MemcachedCache" p:client-ref="ky.memcachedClient" p:name="kyOrganizationCache" p:exp="3600"/>
        </set>
    </property>
</bean>

使用

@Cacheable(value = "kyAreaCache", key="targetClass + '.' + methodName + '.' + #areaId")
public KyArea findById(String areaId) {
    // 业务代码省略
}
阅读更多
个人分类: cache
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭