随着网络威胁的不断增长和安全法规的日益严苛,全球网络安全投资规模不断创下新高。据Gartner预测,2024年全球组织在IT安全和风险管理工具上的投入将达到2087亿美元。
然而,埃森哲(Accenture)的报告却显示,尽管投入巨资,超过七成(74%)的首席执行官对企业数据安全和网络安全态势缺乏信心。
数据安全的头号难题:安全数据孤岛
长期以来,人们普遍认为部署的安全解决方案越多,威胁防御能力就越强,但现实往往截然相反。事实上,五花八门的安全工具所产生的海量安全数据反而成了数据安全和网络安全的一大挑战,导致企业陷入被动防御的局面。
不断扩大的攻击面和激增的法规(例如PCI DSS4.0、NIST、FISMA等)使得安全态势评估变得更加频繁,进一步刺激了针对特定攻击面和漏洞的各类安全工具的部署增长。然而,这些解决方案往往相互孤立,使得安全人员难以识别关键业务领域,评估漏洞的可利用性以及安全举措和控制措施的有效性。打破安全数据孤岛通常需要人工聚合和关联数据,这会导致关键问题得不到及时解决。
IBM的2023年数据泄露成本报告显示,67%的数据泄露是由第三方而不是内部资源发现的。归根结底,企业的目标是提高检测和响应速度,缩短攻击者利用软件或网络配置漏洞的时间窗口。显然,虽然企业坐拥大量安全(工具产生的)数据可帮助理解特定攻击行为的上下文,但仍存在巨大的技术障碍需要克服。
安全数据ETL的局限性
安全监控会产生大量数据,但这些原始数据本身只是实现目标的一种手段。信息安全决策需要基于从安全数据中提取的可操作情报