关于第一型曲面积分的再思考

本文探讨了第一型曲面积分的计算方法,强调在化简问题时将曲面投影到较直的平面上,通过投影、代入和计算三个步骤来转化为二重积分。以曲面S: x²+y²=a²,(0≤z≤a)为例,讨论了投影到xoz平面的合理性,并通过显函数和隐函数两种情况解释了如何确定积分系数,最终将问题转换为简单的三角相关积分。" 121854274,11663885,Java IO/NIO/AIO详解与对比,"['Java', '后端开发', '程序人生', 'NIO']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

关于第一型曲面积分的再思考

@(微积分)

有些问题,看着复杂,却很好解。同样,有些问题看着很简单,但是却很难下手。举一个关于第一型曲面积分计算的例子。

第一型曲面积分基础解法要干三件事:

  • 投影
  • 代入
  • 计算

三件事之间没有逻辑顺序,想先干谁就干谁。

目标是为了化为二重积分。曲面太弯了,我们需要在比较直的场面下才好进行积分。

或者可以固化为一种自己喜欢的顺序:

  • 一投
  • 二代
  • 三计算

设曲面S: x2+y2=a2,(0za) , 求 :

I=SdSx2+y2+z2

分析:线面积分我们知道是可以代入到被积函数的,如果能代进去简化问题,那么毫不客气代入进去。

I=SdSa2+z2

这里写图片描述

积分曲面:柱面,是很容易想象的。

在能计算之前,还少一步:投影。

往哪投?

显然这个曲面投影到xoy面上就是个线,线可不是二重积分。当然这不是否认往xoy平面投影的真正原因。真正原因是:投影到坐标平面,不允许有重合的点

如果投影到xoy,压缩得只剩线了,你想有多少重合的点啊,都挤在一个线上了。数不过来了已经。

那么往xoz,或者yoz平面上头都是可以的,但是,根据上面所说,不允许重合,那么首先就得思考这个曲面关于xoz的对称性(现在选投影到xoz上)。

显然关于xoz对称,且被积函数是关于y的偶函数(表达式里根本就没有y,自然f(x,y,z) = f(x,-y,z))。

所以问题化为:

I=2S1dSa2+z2,y>0

S1 是+y这边的平面。

既然是投影了,意味着把弯曲的部分硬生生的摊平了,是不是要补偿一些什么?

对的,补偿系数。

系数如何补偿?

dS=1+y2x+y

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值