【机器学习框架Ray】
文章平均质量分 82
xl.zhang
熟悉JAVA的WEB编程、大数据编程和分布式机器学习。
展开
-
机器学习框架Ray——Actor模型
1. ActorsRay中的远程函数被认为是功能性强和副作用低的框架。 仅限于远程函数的情况下,可以为我们提供分布式函数编程,这对于许多使用情况非常有用,但在实践中会受到一些限制。Ray通过actor扩展了数据流模型。 一个actor本质上是一个有状态的worker(或service)。 当一个新的actor被实例化时,一个新的worker被创建,并且该actor的方法被安排在该特定的wo...原创 2018-05-17 16:16:35 · 10016 阅读 · 1 评论 -
TensorFlow: A System for Large-Scale Machine Learning
简介TensorFlow是一种机器学习系统,可在大规模和异构环境中运行。TensorFlow使用数据流图来表示计算,共享状态以及改变该状态的操作。它将数据流图的节点映射到集群中的多台机器上,并且单台机器上跨多个计算设备,包括多核CPU,通用GPU和定制设计的ASIC,称为张量处理单元(TPU)。这种架构为应用程序开发人员提供了灵活性:在以前的“参数服务器”设计中,共享状态的管理内置于系统中,T...翻译 2019-10-09 08:34:05 · 5042 阅读 · 2 评论 -
Ray:评估代码性能
本文档适用于想要了解如何在Ray上运行时评估其代码性能的Ray用户。分析代码的性能对于确定性能瓶颈或找出可能无法正确并行化的代码的位置非常有用。如果你有兴趣查明为什么你的Ray应用程序可能无法实现预期的加速,仔细阅读本文。 一个基础分析示例尝试分析一个简单的例子,并比较编写简单循环的不同方式会如何影响性能。作为计算密集且可能运行比较慢的函数的代表,我们将远程函数定义为只睡眠0.5秒...原创 2018-08-28 10:39:08 · 2756 阅读 · 2 评论 -
CIEL : a universal execution engine for distributed data-flow computing
简介本文介绍了CIEL,一种用于分布式数据流程序的通用执行引擎。与以前的执行引擎一样,CIEL掩盖了分布式编程的复杂性。与那些系统不同,CIEL作业可以做出与数据相关的控制流决策,这使它能够计算迭代和递归算法。 我们还开发了Skywriting,一种直接在CIEL上运行的图灵完整脚本语言。执行引擎为Skywriting脚本和用其他编程语言编写的高性能代码提供透明的容错和分发。 我们在云...翻译 2018-08-13 19:59:01 · 2175 阅读 · 0 评论 -
Fast Python Serialization with Ray and Apache Arrow
这篇文章详细阐述了Ray和Apache Arrow之间的集成。解决的主要问题是数据序列化。查阅Wikipedia,序列化指: 将数据结构或对象状态转换为可以存储...或传输的格式的过程...以及稍后重建(可能在不同的计算机环境中) 为什么需要上述的转换? 当你创建一个Python对象时,它可能指向其他Python对象,并且这些对象都分配在不同的内存区域中,并且...原创 2018-07-15 11:50:12 · 4718 阅读 · 0 评论 -
Using Ray with TensorFlow
本文(英版)档介绍了Ray中结合TensorFlow使用的最佳实践。要查看使用TensorFlow的更多相关示例,请查看A3C,ResNet,Policy Gradients,LBFGS 如果在分布式环境中训练深层网络,则可能需要在进程(或计算机)之间运送深层网络。 例如,你可能在一台计算机上更新模型,然后使用该模型在另一台计算机上计算梯度。 但是,运输模型并不总是顺利的。 例...原创 2018-07-18 21:26:44 · 4282 阅读 · 0 评论 -
Ray Tune Hyperparameter Optimization Framework
Ray Tune是一个可扩展的超参数优化框架,用于强化学习和深度学习。 从在单台计算机上运行一个实验到使用高效搜索算法在大型集群上运行,而无需更改代码。本篇博客中所提及的函数。 一、简单开始首先需要安装Ray,使用命令 pip install ray简单示例:import rayimport ray.tune as tuneray.init()tune.regis...原创 2018-07-24 09:50:21 · 5127 阅读 · 0 评论 -
Ray Tune相关API介绍
1. 注册可训练的函数或类ray.tune.register_trainable(name, trainable)参数: name (str) - 注册的方法或函数名。 trainable (obj) - 函数或tune.Trainable类。函数必须采用(config, status_reporter)作为参数,并且在注册的过程中自动转换为类。 2. 构造ex...原创 2018-07-23 22:18:04 · 3397 阅读 · 0 评论 -
snappy-c.h: 没有那个文件或目录
ubuntu 16.04安装python-snappy出现如下错误: snappy/snappymodule.cc:31:22: fatal error: snappy-c.h: 没有那个文件或目录解决方法: sudo apt-get install libsnappy-dev原创 2018-07-02 13:49:06 · 3816 阅读 · 0 评论 -
Ray: A Distributed Framework for Emerging AI Applications
Ray是UC Berkeley RISELab新推出的高性能分布式执行框架,目前还处于实验室阶段,具有比Spark更优秀的性能,有望在将来取代Spark。本篇博客是对该论文的简单翻译,如有翻译不妥的地方,欢迎指正。原论文 pdfRay开发手册 Ray-Guide项目下载 Ray0 简介下一代AI应用程序将不断与环境交互,并从这些交互中学习。这些应用程序在性能和灵活性方面...翻译 2018-02-15 09:51:13 · 7396 阅读 · 3 评论 -
Real-Time Machine Learning: The Missing Pieces
本篇博客是对论文 Real-Time Machine Learning The Missing: Pieces 的简单翻译,如有翻译不妥的地方,欢迎指正。论文地址摘要 机器学习应用程序越来越多地被部署,不仅用于使用静态模型进行预测,而且还作为涉及动态实时决策制定的反馈回路的紧密集成组件。这些应用程序提出了一组新的需求,但其中的任何一个都不难以单独实现,但其组合给现有的分布式执行框架带来了挑战:高...翻译 2018-03-24 10:33:54 · 5596 阅读 · 0 评论 -
高性能分布式执行框架——Ray
原文地址:http://www.cnblogs.com/fanzhidongyzby/p/7901139.htmlRay是UC Berkeley RISELab新推出的高性能分布式执行框架,它使用了和传统分布式计算系统不一样的架构和对分布式计算的抽象方式,具有比Spark更优异的计算性能。 Ray目前还处于实验室阶段,最新版本为0.2.2版本。虽然Ray自称是面向AI应用的分布式计算框...转载 2018-04-17 16:38:15 · 7837 阅读 · 5 评论 -
Scaling distributed machine learning with the parameter server
当今越来越多的机器学习系统都采用了分布式,在分布式领域里,少帅的第三代PS框架深受欢迎。本文是在研读论文“Scaling distributed machine learning with the parameter server”时,按照自己理解对其进行翻译,不免有很多细节不对之处,希望各位看官能够见谅。论文下载地址我们为分布式机器学习问题提出了参数服务器框架。 数据和工作负载分发到...翻译 2018-05-04 21:40:27 · 7118 阅读 · 0 评论 -
Ray: Scheduling and Actor placement
Ray是面向增强学习场景的分布式计算框架,相关介绍参考博客。本篇文章主要对 Ray中 remote函数的调度以及 Actor抽象的放置进行介绍。 一、Remote函数的调度1. Remote函数的定义Remote函数时Ray分布式计算中的核心概念,一般如下所示:@ray.remotedef add(a, b): return a + bid_c = add....原创 2018-10-24 19:26:53 · 2610 阅读 · 0 评论