Ray Tune Hyperparameter Optimization Framework

Ray Tune是一个可扩展的超参数优化框架,支持强化学习和深度学习的实验。它提供多种搜索算法如PBT、HyperOpt,具备与TensorBoard等工具的集成,能灵活处理大型数据集,并支持试验检查点和资源感知调度。Ray Tune可在单机或分布式集群上运行,且易于集成到深度学习框架中。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Ray Tune是一个可扩展的超参数优化框架,用于强化学习和深度学习。 从在单台计算机上运行一个实验到使用高效搜索算法在大型集群上运行,而无需更改代码。

本篇博客中所提及的函数

 

一、简单开始

首先需要安装Ray,使用命令 pip install ray

简单示例:

import ray
import ray.tune as tune

ray.init()
tune.register_trainable("train_func", train_func)

all_trials = tune.run_experiments({
    "my_experiment": {
        "run": "train_func",
        "stop": {"mean_accuracy": 99},
        "config": {
            "lr": tune.grid_search([0.2, 0.4, 0.6]),
            "momentum": tune.grid_search([0.1, 0.2]),
        }
    }
})

对于想要调整的函数,添加两行修改(请注意,我们使用PyTorch作为示例,但Ray Tune适用于任何深度学习框架,PyTorch中文文档

def train_func(config, reporter):  # add a reporter arg
     model = NeuralNet()
     optimizer = torch.optim.SGD(
         model.parameters(), lr=config["lr"], momentum=config["momentum"])
     dataset = ( ... )

     for idx, (data, target) in enumerate(dataset):
         # ...
         output = model(data)
         loss = F.MSELoss(output, target)
         loss.backward()
         optimizer.step()
         accuracy = eval_accuracy(...)
         reporter(timesteps_total=idx, mean_accuracy=accuracy) # report metrics

这个PyTorch脚本使用Ray Tune在train_func函数上运行一个小的网格搜索,在命令行上报

### 使用 Ray Tune 调优 YOLO 模型的最佳实践 #### 定义可调参数空间 在使用 Ray Tune 对 YOLO 模型进行超参数调优时,首先需明确定义哪些超参数可以被调整以及它们的变化范围。这些通常包括学习率、批量大小、优化器的选择及其特定参数等。 对于 YOLOv8 特定情况而言,可能还会涉及到锚框尺寸和其他架构相关设置。通过合理设定搜索区间能够有效提升最终模型性能[^1]。 ```python from ray import tune config = { "lr": tune.loguniform(1e-4, 1e-2), "batch_size": tune.choice([32, 64, 128]), "optimizer": tune.grid_search(["sgd", "adam"]), } ``` #### 设置训练逻辑与评估指标 接下来是要编写一段代码片段,在其中实现具体的训练流程,并指定用来衡量模型好坏的标准(比如 mAP@0.5)。这段程序应该接受由上述配置字典传入的不同超参数组合作为输入参数来进行多次迭代尝试直至收敛或达到预设的最大轮次限制。 值得注意的是,为了让 Ray Tune 正确记录每次试验的结果以便后续分析比较,应当确保每一轮结束后都将当前验证集上的表现分数返回给框架处理。 ```python def train_yolov8(config): model = create_model() # 创建YOLO v8实例 optimizer = get_optimizer(model.parameters(), config["optimizer"], lr=config["lr"]) for epoch in range(num_epochs): loss = training_step(optimizer=optimizer, batch_size=config["batch_size"]) # 执行单步训练 val_accuracy = evaluate_on_validation_set() tune.report(mean_accuracy=val_accuracy) # 向Ray Tune汇报评价结果 ``` #### 并行化执行多组实验 借助于分布式计算能力的支持,可以在同一时间并发运行多个具有不同初始化条件的任务实例从而加速整个探索进程。这不仅有助于更快地发现更佳解方案而且还能充分利用集群资源提高效率[^2]。 可以通过简单修改 `tune.run()` 方法中的选项来自定义调度策略及硬件分配细节: ```python analysis = tune.run( train_yolov8, config=config, num_samples=10, resources_per_trial={"cpu": 2, "gpu": 1}, ) ``` #### 结果可视化与最佳配置提取 完成所有预定次数的采样之后,可以从日志文件中读取历史记录绘制图表直观展示各候选者之间的差异;同时也能轻松获取到最优那一套参数值供下一步操作参考使用。 ```python print("Best config is:", analysis.get_best_config(metric="mean_accuracy")) df = analysis.dataframe() ax = df.plot(kind='line', x='training_iteration', y=['mean_accuracy']) fig = ax.get_figure() fig.savefig('results.png') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值