# Max Sum

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 110957    Accepted Submission(s): 25601

Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.

Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).

Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.

Sample Input
2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5

Sample Output
Case 1: 14 1 4 Case 2: 7 1 6

Author
Ignatius.L

（2，-3，4，-1）这个数串枚举的所有情况为：

#include<cstdio>

int main()
{
int t,n,k,sum,temp_position,start,endd,num;
scanf("%d",&t);
for(k=1;k<=t;k++)
{
scanf("%d",&n);
sum=0;
temp_position=1;
int ans=-1010;
for(int i=1;i<=n;i++)
{
scanf("%d",&num);
sum += num;

if(sum > ans)
{
ans=sum;
start=temp_position;
endd=i;
}
if(sum<0)
{
sum=0;
temp_position=i+1;
}
}
printf("Case %d:\n",k);
printf("%d %d %d\n",ans,start,endd);
if(k!=t)
printf("\n");
}
return 0;
}


1、这题其实真的很能反映“动态规划”最优子结构的特点。。。
2、动规的题，我感觉这只能算是第2题。。。还在找感觉。。。