hdu 4466 Triangle (12年成都区域现场赛c题)(dp+组合数学)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4466

Triangle

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 227    Accepted Submission(s): 115


Problem Description
You have a piece of iron wire with length of n unit. Now you decide to cut it into several ordered pieces and fold each piece into a triangle satisfying:
*All triangles are integral.
* All triangles are pairwise similar.
You should count the number of different approaches to form triangles. Two approaches are considered different if either of the following conditions is satisfied:
*They produce different numbers of triangles.
* There exists i that the i th (again, pieces are ordered) triangle in one approaches is not congruent to i th triangle in another plan.
The following information can be helpful in understanding this problem.
* A triangle is integral when all sides are integer.
*Two triangles are congruent when all corresponding sides and interior angles are equal.
* Two triangles are similar if they have the same shape, but can be different sizes.
*For n = 9 you have 6 different approaches to do so, namely
(1, 1, 1) (1, 1, 1) (1, 1, 1)
(1, 1, 1) (2, 2, 2)
(2, 2, 2) (1, 1, 1)
(1, 4, 4)
(2, 3, 4)
(3, 3, 3)
where (a, b, c) represents a triangle with three sides a, b, c.


 

Input
There are several test cases.
For each test case there is a single line containing one integer n (1 ≤ n ≤ 5 * 10 6).
Input is terminated by EOF.


 

Output
For each test case, output one line “Case X: Y” where X is the test case number (starting from 1) and Y is the number of approaches, moduled by 10 9 + 7.


 

Sample Input
  
  
1 2 3 4 5 6 8 9 10 11 12 15 19 20 100 1000


 

Sample Output
  
  
Case 1: 0 Case 2: 0 Case 3: 1 Case 4: 0 Case 5: 1 Case 6: 2 Case 7: 1 Case 8: 6 Case 9: 3 Case 10: 4 Case 11: 10 Case 12: 25 Case 13: 10 Case 14: 16 Case 15: 525236 Case 16: 523080925


 

Source


 

Recommend
liuyiding

 

题意:

给你一段长度为n的线,求能分割成的相似的三边互质的三角形的个数。

 

分析:

1、本质三角形的定义:设a、b、c为三角形的三边,则gcd(a,b,c)=1。

2、先不考虑边互不互质,算出周长为i的三角形个数(动规实现,其实暴力应该也可以)。然后算周长为i,即

     i个单位长度作边长的三角形的组合数。

     a)你用隔板法考虑就是i个点,i-1个空格插隔板,djw[i]=2^(i-1)种;

     b)你也可以按选与不选考虑。

     注:放在一个格子里的三角形边长合并组成大边长的三角形。

     最后就是n/i个周长为i的三角形组合数即为所求。

3、说一下用动态规划求dp[i]的过程:

     

       函数dp(x),表示周长为 x的不同三角形(a,b,c)的数量,我们假设( a <= b <= c )

  则我们通过枚举最大周长 x, 假设其最大边为 c.

  则问题可以划分为两类独立: 1: b = c  2:b != c

  第一种情况: b = c, 周长为x的三角形 (a,c,c) 的方案数为:

    因为 a+c+c = x , a <= c 那么

               c最大取 A=floor((x-1)/2 ), c最小取 B=ceil( x/3 ), 此时三角形种类: A-B+1

  第二种情况: b != c, 周长为x的三角形 (a,b,c) 的方案数为:

    因为 a+b+c = x, b <= c-1,a+b > c,

    这里, 我们转而考虑 , 形式如 ( a, b, c-1 ) 的三角形, 其方案数为 f( x-1 ),

因为 b <= c-1, a+b > c-1,则当 a+b > c ,则其就是三角形 (a,b,c)下的不同三角形数量 f(x).

但是这里有个地方不满足, 就是当 a+b == c,的时候, 假设其为 M , 则我们就可以得出: f( x ) = f( x-1 ) - M , (b!=c).

    问题就是如何计算出这个M, 我们继续考虑.

a+b+(c-1) = x-1,

=>a+b+c = x, 又因为 a+b = c. 可以得到

=> c+c = x , 2*c = x, 所以 c = x/2, 因为c为整数,所以我们知道,只有当x为偶数时才会出现这个M.

    又 a + b = c = x/2, a <= b , 此时 a 的取值为 [ 1, floor( (x/2)/2 ) ]

    所以 x为偶数时, M = floor( (x/2)/2 )

                     当 x为奇数时, M = 0;

 

代码:

/*
  注释:把djw[]看成因子fact[]可能会方便你理解。哈哈!
  1.本质三角形就是三边互质的三角形
  2.dp[n]表示以n为周长的三角形个数
  3.djw[i]表示将i个三角形用插隔板法为djw[i]=2^(i-1)
  4.如果觉得插隔板法不理解的话,你也可以理解为i个单位周长的三角形取或者不取,
    至少取一个.那么就有2^(i-1)种组合情况。
  5.c=(c+(__int64)dp[i]*djw[n/i])%mod;这里计算sum(dp[i] * djw[n/i])。i为n的因子
    周长为i的三角形有n/i个,各种不同的组合形成不同的三角形。
  6.主函数中的优化:n很大,到了10^6(利用对称的特点:n/i=j,则对称的可以得到n/j=i)
*/


#include<cstdio>
#include<iostream>
#include<cmath>
using namespace std;

const int mod=(int)1e9+7;
const int N=5e6+10;
int dp[N],djw[N];

void cal_bztri()     //计算本质三角形的个数
{
    int i,j;
    dp[3]=1;                     
    for(i=4;i<N;i++)             //动规方程求周长在1—N范围内的三角形 
    {
        dp[i]=dp[i-1]+floor((i-1)/2.)-ceil(i/3.)+1;
        if(!(i&1)) dp[i]-=floor((i/2)/2.);
        if(dp[i]>=mod) dp[i]-=mod;
        if(dp[i]<0) dp[i]+=mod;
    }
    djw[1]=1,djw[2]=2;
    for(i=3;i<N;i++)
    {
        djw[i]=djw[i-1]*2;       //递推(每次多一个就多了一次取与不取的情况)
        if(djw[i]>=mod) djw[i]-=mod;
        for(j=2;i*j<N;j++)         //去掉那些可以约分的三角形,因为如果能约分,就不满足互质的条件(筛选)
        {							//比如3*(1,1,1)就是一个可约分三角形
            int t=i*j;
            dp[t]-=dp[i];
            if(dp[t]<0) dp[t]+=mod;
        }
    }
}

int main()
{
    int cases=0,n;
    cal_bztri();
    while(scanf("%d",&n)!=EOF)
    {
        __int64 c=0;
        for(int i=1;i*i<=n;i++)     //优化
        {
            if(n%i==0)   //计算sum(dp[i] * djw[n/i]) i为n的因子
            {
                c=(c+(__int64)dp[i]*djw[n/i])%mod;
                if(i*i!=n)           //如果n是平方数就只需要算一次
                    c=(c+(__int64)dp[n/i]*djw[i])%mod;
            }
        }
        printf("Case %d: %I64d\n",++cases,(c+mod)%mod);
    }
    return 0;
}


/*
  优化部分也可写成:
  for(int i=1;i<=n;i++) 
     if(n%i==0) 
        c=(c+(__int64)dp[i]*djw[n/i])%MO;
   //其实可以写成n/2,不过还是没有sqrt(n)优化的好。
*/


 

8674165

2013-07-23 09:24:46

Accepted

4466

1796MS

39420K

1109 B

C++

 

 

哈哈哈!!!! 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道是一道经典的斜率优化dp目,需要用到单调队列的思想。 目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道目。 首先,让我们看一下该目的描述。目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该目的解思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问可以用斜率优化DP解决。 首先,我们需要了解原问的含义。问描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问的时候,斜率优化DP可以很好地解决问

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值