取扑克牌问题

问题:54张扑克牌,两个人轮流拿牌,每人每次最少取1张牌,最多取4张,谁最后一张拿牌谁输,编写模拟计算机先拿牌且必胜的算法。

思路:首先N=1+4=5

54-1)/5=10余3

故先拿牌者取3张即可稳保胜利。

操作如下:

计算机先拿张后,执行如下原则:

玩家1张,计算机4张;

玩家2张,计算机3张;

玩家3张,计算机2张;

玩家4张,计算机1张;

就是保持每轮双方一共拿走5张牌,这样计算机最后一次取牌后扑克牌就只剩一张,玩家必输

C程序:

#include<stdio.h>

int main(){
int s=0; //记录总张数
int k; //记录一次出的牌张数
int t;       //最后为计算机出牌时,t为1,人出牌时,t为0
t=1; //首先计算机出牌,t变为1
k=3;
printf("机:%d\n",k);
s=s+k;
do{
printf("现在剩%d张\n",54-s); //提示玩家剩余张数
t=0; //玩家出牌,t变为0
printf("人:");
scanf("%d",&k);
while(k<1||k>4) //判断玩家出牌是否符合规则
{
printf("每人每次最少取1张牌,最多取4张,请重新输入\n");
t=0;
printf("人:");
scanf("%d",&k);
};
s=s+k;
t=1;
k=5-k;
printf("机:%d\n",k);
s=s+k;
}
while(s<53);
printf("现在剩%d张\n",54-s);
t=0;
printf("人:");
scanf("%d",&k);
s=s+k;
if(s==54)
printf("%d张扑克牌已取完\n",s);
if(t==0)
printf("计算机胜!");
else
printf("玩家胜!");
return 0;
}
 

 

这个问题属于博弈论中的策略游戏,通常被称为“汉诺塔游戏”的变种。为了让计算机先手必胜,需要设计一种策略使其总是能保证无论对手如何选择,都能保持对剩余数的优势。 首先,我们可以将总数视为3的倍数加1(这里是54=18*3+0),这是因为每一轮玩家走的数之和始终会减少到一个3的倍数。所以当轮到计算机时,它应该确保剩下的数是一个非零的3的倍数。 计算机的策略可以分为两个部分: 1. **初始策略**:计算机先走总数减去3(因为它是非零3的倍数),使得剩下的是一个完整的3的倍数,例如如果开始是54张,则计算机拿走51张。 2. **后续策略**:每次对手n张(1≤n≤4),计算机则\( 3 - n \)张。这样,总数始终保持为3的倍数,而当对手完所有单数(如3、6、9...)之后,只剩下偶数张,此时对手无法再满足规则走最后1张。 以下是简单的Python代码实现这个策略: ```python def is_winnable(total_cards): # 判断剩余数是否为3的倍数 if total_cards % 3 != 0: return False # 计算电脑需要先走的数 first_move = (total_cards // 3) * 3 + 3 return first_move <= total_cards # 游戏开始时,判断并打印第一局是否为电脑必胜 initial_cards = 54 if is_winnable(initial_cards): print("电脑有必胜策略") else: print("电脑没有必胜策略") # 根据实际情况,你可以在此基础上构建游戏循环,模拟两人交替的过程 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值