最近,发现一些题目,关于去扑克牌的,大致是:
一、15张扑克牌,甲、乙两人轮流取,每次取1~3,谁取走最后一张谁就赢.
(1)这个游戏规则对于甲、乙两方公平吗?
(2)是先取者必胜,还是后取者必胜有何致胜秘诀?
(3)若将上面的15张扑克换成n张(n是不小于4的正整数),情况又如何?
分析:先取的人,动脑筋即可一定获胜.
解:
(1)不公平;
(2)是先取者赢.
因为为了要取得最后一根,甲必须最后留下零根火柴给乙,故在最后一步之前的轮取中,甲不能留下1根或2根或3根,否则乙就可以全部取走而获胜.
如果留下4根,则乙不能全取,则不管乙取几根(1或2或3),甲必能取得所有剩下的火柴而赢了游戏.
同理,若桌上留有8根火柴让乙去取,则无论乙如何取,甲都可使这一次轮取後留下4根火柴,最后也一定是甲获胜.
由上分析可知,甲只要使得桌面上的火柴数为4﹑8﹑12﹑16等让乙去取,则甲必稳操胜券.
因此若原先桌面上的火柴数为15,则甲应取3根.(∵15-3=12)(2分)
&#x