注意题目中的直径并不是指距离最远的两点的距离,而是最短路最长两点的最短路。
用map[i][j]表示两点之间的最短路。
读入时初始化map,如果两点之间有边则map[i][j]=dist(i, j)否则map[i][j]=INF.
然后用一次floyd算出任意两点最短路。
mmax[i]表示从节点i出发,能到达的最远的节点的路程。
对于每一个不联通的i,j,将他俩接通,此时直径为mmax[i]+mmax[j]+dist(i,j).
用map[i][j]表示两点之间的最短路。
读入时初始化map,如果两点之间有边则map[i][j]=dist(i, j)否则map[i][j]=INF.
然后用一次floyd算出任意两点最短路。
mmax[i]表示从节点i出发,能到达的最远的节点的路程。
对于每一个不联通的i,j,将他俩接通,此时直径为mmax[i]+mmax[j]+dist(i,j).
枚举每一个不联通的i,j,计算直径统计最大值。
/*
ID:shijiey1
PROG:cowtour
LANG:C++
*/
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define INF 0x3f3f3f3f
using namespace std;
int n;
int x[155], y[155];
double map[155][155];
double mmax[155];
double res = INF;
double dist(int a, int b) {
return sqrt((x[a] - x[b]) * (x[a] - x[b]) + (y[a] - y[b]) * (y[a] - y[b]));
}
int main() {
freopen("cowtour.in", "r", stdin);
freopen("cowtour.out", "w", stdout);
memset(mmax, 0, sizeof(mmax));
scanf("%d", &n);
for (int i = 1; i <= n; i++)
scanf("%d %d\n", &x[i], &y[i]);
char c;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
scanf("%c", &c);
if (c == '1') map[i][j] = dist(i, j);
else map[i][j] = INF;
if (i == j) map[i][j] = 0;
}
getchar();
}
for (int k = 1; k <= n; k++)
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
map[i][j] = min(map[i][j], map[i][k] + map[k][j]);
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
if (map[i][j] != INF)
mmax[i] = max(mmax[i], map[i][j]);
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
if (map[i][j] == INF)
res = min(res, mmax[i] + mmax[j] + dist(i, j));
for (int i = 1; i <= n; i++)
res = max(res, mmax[i]);
printf("%lf\n", res);
return 0;
}