[Noi2014]魔法森林 (Link Cut Tree)

Description

  • 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士。魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M。初始时小E同学在号节点1,隐士则住在号节点N。小E需要通过这一片魔法森林,才能够拜访到隐士。

  • 魔法森林中居住了一些妖怪。每当有人经过一条边的时候,这条边上的妖怪就会对其发起攻击。幸运的是,在号节点住着两种守护精灵:A型守护精灵与B型守护精灵。小E可以借助它们的力量,达到自己的目的。

  • 只要小E带上足够多的守护精灵,妖怪们就不会发起攻击了。具体来说,无向图中的每一条边Ei包含两个权值Ai与Bi。若身上携带的A型守护精灵个数不少于Ai,且B型守护精灵个数不少于Bi,这条边上的妖怪就不会对通过这条边的人发起攻击。当且仅当通过这片魔法森林的过程中没有任意一条边的妖怪向小E发起攻击,他才能成功找到隐士。

  • 由于携带守护精灵是一件非常麻烦的事,小E想要知道,要能够成功拜访到隐士,最少需要携带守护精灵的总个数。守护精灵的总个数为A型守护精灵的个数与B型守护精灵的个数之和。


Input

  • 第1行包含两个整数N,M,表示无向图共有N个节点,M条边。 接下来M行,第行包含4个正整数Xi,Yi,Ai,Bi,描述第i条无向边。其中Xi与Yi为该边两个端点的标号,Ai与Bi的含义如题所述。 注意数据中可能包含重边与自环。

Output

  • 输出一行一个整数:如果小E可以成功拜访到隐士,输出小E最少需要携带的守护精灵的总个数;如果无论如何小E都无法拜访到隐士,输出“-1”(不含引号)。

Sample Input

  • 【输入样例1】
    4 5
    1 2 19 1
    2 3 8 12
    2 4 12 15
    1 3 17 8
    3 4 1 17

  • 【输入样例2】
    3 1
    1 2 1 1


Sample Output

  • 【输出样例1】
    32
    【样例说明1】
    如果小E走路径1→2→4,需要携带19+15=34个守护精灵;
    如果小E走路径1→3→4,需要携带17+17=34个守护精灵;
    如果小E走路径1→2→3→4,需要携带19+17=36个守护精灵;
    如果小E走路径1→3→2→4,需要携带17+15=32个守护精灵。
    综上所述,小E最少需要携带32个守护精灵。

  • 【输出样例2】
    -1
    【样例说明2】
    小E无法从1号节点到达3号节点,故输出-1。


HINT

  • 2<=n<=50,000
    0<=m<=100,000
    1<=ai ,bi<=50,000

题解

  • 把边按a的值由小到大排序
  • LCT维护边的b值和子树的max值,为什么要维护max下文会说,先说下LCT如何维护边的值:
    • 设边 Ei 连接节点 u , v,则建立节点 i+n ,连接 (u,i+n) (v,i+n)
    • 这样节点 i+n 就可以代表边 Ei
  • 设排序好的数组为 E[] ,依次取出每一条边 Ei=(u,v)
    • u,v 在不同子树中,则 link(u,v) (类似最小生成树,连通性用并查集维护)。
    • u,v 在同一子树,则连接 (u,v) 后必定存在一条环,找出环上权值最大的边将其删去(这就是维护max的原因)。
  • 每执行完一条边的操作,就判断一下起点和终点是否在一个子树中。如果在同一个子树,则说明此时可以从起点到终点,更新答案。
  • 关键部分代码:
for (int i = 1; i <= m; i++) {
    int u = edges[i].u, v = edges[i].v;
    if (find(u) != find(v)) { // find和un都是并查集操作
        un(u, v);
        link(u, n + i);
        link(v, n + i);
    } else solve(i); // 找到环上最大的边将其删去
    if (find(1) == find(n)) ans = min(ans, val[query(1, n)] + edges[i].a);
}

其实想通了还是蛮水的←_←



完整代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <cmath>
#include <climits>

#define INF 0x3f3f3f3f

using namespace std;

const int MAXN = 50005;
const int MAXM = 100005;

int parent[MAXN];
int find(int r) { return (r == parent[r]) ? r : parent[r] = find(parent[r]); }
void un(int p, int q) { parent[find(p)] = find(q); }

int n, m;
struct Edge{
    int u, v, a, b;
    bool operator < (const Edge & e) const { return a < e.a; }
} edges[MAXM];

int val[MAXN + MAXM], mx[MAXN + MAXM];
int tr[MAXN + MAXM][2];
int fa[MAXN + MAXM];
int q[MAXN + MAXM], top = 0;
bool rev[MAXN + MAXM];
bool isroot(int x) {
    return tr[fa[x]][0] != x && tr[fa[x]][1] != x;
}
void pushup(int x) {
    int l = tr[x][0], r = tr[x][1];
    mx[x] = x;
    if (val[mx[l]] > val[mx[x]]) mx[x] = mx[l];
    if (val[mx[r]] > val[mx[x]]) mx[x] = mx[r];
}
void pushdown(int x) {
    int l = tr[x][0], r = tr[x][1];
    if (rev[x]) {
        rev[x] ^= 1;
        rev[l] ^= 1;
        rev[r] ^= 1;
        swap(tr[x][0], tr[x][1]);
    }
}
void rotate(int x) {
    int y = fa[x], z = fa[y];
    int l, r;
    if (tr[y][0] == x) l = 0;
    else l = 1;
    r = l ^ 1;
    if (!isroot(y)) {
        if (tr[z][0] == y) tr[z][0] = x;
        else tr[z][1] = x;
    }
    fa[x] = z;
    fa[y] = x;
    fa[tr[x][r]] = y;
    tr[y][l] = tr[x][r];
    tr[x][r] = y;
    pushup(y);
    pushup(x);
}
void splay(int x) {
    top = 0;
    q[++top] = x;
    for (int i = x; !isroot(i); i = fa[i])
        q[++top] = fa[i];
    for (int i = top; i >= 1; i--)
        pushdown(q[i]);
    while (!isroot(x)) {
        int y = fa[x], z = fa[y];
        if (!isroot(y)) {
            if (tr[y][0] == x ^ tr[z][0] == y) rotate(x);
            else rotate(y);
        }
        rotate(x);
    }
    pushup(x);
}
void access(int x) {
    int t = 0;
    while (x) {
        splay(x);
        tr[x][1] = t;
        t = x;
        x = fa[x];
    }
}
void makeroot(int x) {
    access(x);
    splay(x);
    rev[x] ^= 1;
}
void link(int x, int y) {
    makeroot(x);
    fa[x] = y;
}
void cut(int x, int y) {
    makeroot(x);
    access(y);
    splay(y);
    tr[y][0] = fa[x] = 0;
}
int query(int x, int y) {
    makeroot(x);
    access(y);
    splay(y);
    return mx[y];
}
void solve(int k) {
    int u = edges[k].u, v = edges[k].v, w = edges[k].b;
    int t = query(u, v);
    if (w < val[t]) {
        cut(edges[t - n].u, t);
        cut(edges[t - n].v, t);
        link(u, k + n);
        link(v, k + n);
    }
}

int main() {
    scanf("%d %d", &n, &m);
    for (int i = 1; i <= n; i++) parent[i] = i;
    for (int i = 1; i <= m; i++)
        scanf("%d %d %d %d", &edges[i].u, &edges[i].v, &edges[i].a, &edges[i].b);
    sort(edges + 1, edges + m + 1);
    for (int i = 1; i <= m; i++) {
        val[n + i] = edges[i].b;
        mx[n + i] = n + i;
    }
    int ans = INF;
    for (int i = 1; i <= m; i++) {
        int u = edges[i].u, v = edges[i].v;
        if (find(u) != find(v)) {
            un(u, v);
            link(u, n + i);
            link(v, n + i);
        } else solve(i);
        if (find(1) == find(n)) ans = min(ans, val[query(1, n)] + edges[i].a);
    }
    if (ans == INF) cout << -1 << endl;
    else cout << ans << endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值