VLFeat工具包Sift相关函数的学习与使用

本文介绍了VLFeat工具包中SIFT和DenseSIFT的使用,通过运行demo展示了对Calthch256数据集中图片的特征提取。对于vl_sift函数,499×278像素的图片提取了421个特征点,而vl_dsift在特定参数设置下得到7865个特征点。SIFT描述符为128维,由邻域像素梯度方向统计得出;DenseSIFT则涉及binSize、step和bounds等参数的设定。
摘要由CSDN通过智能技术生成


论文:ImageClassification with Fisher Vector: Theory and Practice

数据集:Calthch256

 

主要查看了VLFeat主页上关于SIFT和DENSESIFT的Tutorials。

 

运行了VLFeat中的demo,对于Calthch256中001.ak47类的第一张图片001_0001.jpg(图片大小499×278)使用vl_sift函数对整张图片提取特征,得到421个特征点,而对于vl_dsift函数,通过调整patch size和step size可以控制得到的特征点的坐标和个数。对同一张图片001_0001.jpg,当patch size是24×24,step size取为4时,结果得到了7865个特征点。对于其他图像,也是如此,得到的特征点数大大提高。

 

从vl_sift函数说明中,可以知道检测到的所有特征点以F表示(4×numkeypoints),每个特征点被分配了坐标位置x、y,尺度s和方向th。F中的每一列代表了一个特征点,而每一个descriptor都是128维的,因为:

在高斯尺度图像上,以特征点为中心,将附近邻域划分为 d×d 个子区域(Lowe取d = 4),每个子区域都是一个正方形;

用直方图统计邻域像素的梯度方向,每π/2设置为一个方向,共有8个方向;

在每个子区域上计算8个方向的梯度方向直方图,这样就可以对每个特征点形成一个4*4*8=128维的描述符。

所有特征点的描述符构成D(128×numkeypoints)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值