Python+Django+Mysql开发个性化农产品购物推荐系统、个性化生鲜购物推荐系统、网上购物推荐系统、网上商店推荐系统简单教程 基于用户的协同过滤推荐算法 可视化数据分析

Python+Django+Mysql开发个性化农产品购物推荐系统、个性化生鲜购物推荐系统、网上购物推荐系统、网上商店推荐系统简单教程 基于用户的协同过滤推荐算法 可视化数据分析 PersonalizedShopRecSystemExPy

一、项目简介

1、开发工具和使用技术

Python3及以上版本,Django3.6及以上版本,mysql8,navicat数据库管理工具或者sqlyog数据库管理工具,html页面,javascript脚本,jquery脚本,echarts.js可视化图表工具,自定义星星评分功能(使用font-awesome星星图标字体)等。

2、实现功能

前台首页地址:http://127.0.0.1:8000/
后台首页地址:http://127.0.0.1:8000/admin
管理员账号:admin 管理员密码:admin

前台用户包含:登录、注册、忘记密码、退出登录、搜索商品、浏览商品、修改信息、密码修改、购物车、购买、模拟支付、用户评分、用户收藏、用户评论、用户点赞、可视化排行榜、个性化推荐等功能;

后台管理员包含:商品类型管理、商品管理、用户管理、用户订单管理、用户评分管理、用户收藏管理、用户评论管理、用户点赞管理、用户浏览管理、用户喜好管理、管理员管理等。

个性化推荐:
游客(用户未登录):热门推荐(推荐用户喜好较高的商品);
用户(用户已登录):
基于用户的协同过滤推荐算法,根据用户喜好数据;
如果基于用户的协同过滤推荐算法没有推荐结果(冷启动和数据稀疏性问题造成没有推荐结果),采用基于用户属性的热门推荐(推荐与登录用户相同性别、年龄范围下的用户喜好较高的商品,这是粗粒度的个性化推荐,也有较好效果);
如果基于用户属性的热门推荐没有推荐结果(项目刚上线,用户数据较少造成没有推荐结果),采用热门推荐(推荐用户喜好较高的商品)。

喜欢这部商品的人也喜欢:
先找到对当前商品有喜好值的用户,再找到这些用户下平均喜好值比较高的商品。

排行榜:
使用echarts.js组件实现柱状图和饼状图可视化效果。
用户点赞Top20:点赞量较高的前20个商品。
用户喜好商品类型:有用户喜好的商品中,商品类型的平均喜好值。

商品数据来源:爬取京东商城商品网站

3、开发步骤

一、设计思路
先进行需求分析,得出需要实现的功能,
再进行数据库表的设计,数据表通过主外建实现关联关系
然后是页面设计,页面设计使用自定义html样式
接着是系统代码的开发,基础功能实现后是进行算法实现

二、框架描述
开发框架使用经典的django框架,这也是python web开发的主流框架
采用了MTV的框架模式,即模型M,视图V和模版T,
通过pycharm创建一个新的django框架项目,pycharm会生成django的基本配置,
直接运行后就可以在浏览器访问django默认首页
我们只是在生成的框架中添加自定义模块功能

django框架工作流程
1、用manage .py runserver 启动Django服务器时就载入了在同一目录下的settings.py。
该文件包含了项目中的配置信息,如前面讲的URLConf等,
其中最重要的配置就是ROOT_URLCONF,
它告诉Django哪个Python模块应该用作本站的URLConf,
默认的是urls.py
2、当访问url的时候,Django会根据ROOT_URLCONF的设置来装载URLConf。
3、然后按顺序逐个匹配URLConf里的URLpatterns。
如果找到则会调用相关联的视图函数,并把HttpRequest对象作为第一个参数(通常是request)
4、最后该view函数负责返回一个HttpResponse对象。

三、数据库的设计
数据库设计是使用navicat来创建,操作非常简便

四、算法的实现都是使用python常规函数,严格按照算法步骤实现(算法步骤代码注释很详细)

二、项目展示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

三、代码展示及运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

专业长期研究java、python推荐算法(基于内容、协同过滤、关联规则、机器学习等)、大数据等,欢迎留言、私信互相交流学习,后续会不断更新,欢迎关注。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

linge511873822

亲的鼓励是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值