深度学习
cythine
XIXI
展开
-
Convolutional Neural Networks for Sentence Classification
Convolutional Neural Networks for Sentence ClassificationYoon Kim, New York University, 2014 ACL摘要我们在句子级分类任务中预训练的词向量训练出的CNN上做了一系列的实验。我们展示了一个简单的带有参数调优以及静态向量的CNN模型,在多个基准上都实现了优异的结果。 我们也提出了对结构的简单修改——允许...翻译 2018-10-21 00:41:16 · 790 阅读 · 0 评论 -
Effficient Estimation of Word Representations in Vector Space
Effficient Estimation of Word Representations in Vector SpaceTomas Mokolov,Kai Chen,Greg Corrado,Jeffrey DeanAbstract我们提出了两种新的模型体系结构,用于计算来自非常大数据集的连续向量表示。这些表示的质量在一个词相似任务中被测量,并且这个结果与之前基于不同类型的神经网络的最佳表...翻译 2018-10-25 21:36:00 · 281 阅读 · 0 评论 -
Distributed Representations of Words and Phrases and their Compositionality
Distributed Representations of Words and Phrases and their CompositionalityTomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, Jeffrey Dean1.Abstract在这篇文章中,我们提出了对原来Skip-gram模型的一些扩展。我们展示了在训练结果过程...翻译 2018-10-24 21:11:08 · 407 阅读 · 0 评论 -
Improved Deep Learning Baselines for Ubuntu Corpus Dialogs
摘要这篇论文展示了在Ubuntu Dialog Corpus(现有可用的最大的多转折对话语料库)上的实验结果。首先,用之前的模型在相同数据集上做了一个评价。然后评价了不同模型:LSTMs,Bi-LSTMs以及CNNs在设个数据集上的性能。最后通过将多模型预测平均化得到一个合体,这个合体在回答排序方面提高了性能而且实现了一个最佳结果。介绍Ubuntu对话数据集由Ubuntu对话日志得来。虽然多...翻译 2019-01-11 15:51:55 · 309 阅读 · 0 评论 -
A Neural Conversational Model
摘要:这篇文章提出了一个利用Seq2Seq框架构建对话模型的简单方法。模型根据之前的句子预测下一个句子。这个模型的优点是能够实现end-to-end的训练而且仅需要很少的手写规则。在被给予大量对话训练集的基础之上,该模型能够生成简单的对话。初步结果显示,尽管优化了错误的目标函数,这个模型的效果也非常好。它不仅不能够从某一领域特定数据集中抽取知识,还能够从一个大量的,有噪声的电影字幕中抽取知识。在一...翻译 2019-01-09 16:01:45 · 382 阅读 · 0 评论