PyCharm三种解释器的区别(virtual Enviroment, system interpreter, conda Enviroment)

Python 全栈工程师核心面试 300 问深入解析(2020 版)----全文预览
Python 全栈工程师核心面试 300 问深入解析(2020 版)----欢迎订阅

刚开始用Pycharm的时候,选择project interpreter,add local的设置解释器的时候,里面有三个选择:

1. virtual Enviroment
2. system interpreter
3. conda Enviroment

1. system interpreter表示本地的解释器
选择系统里面安装的Python作为解释器,不推荐使用

2. Virtual Environment—Python的虚拟环境
可以使一个Python程序拥有独立的库library和解释器interpreter,而不用与其他Python程序共享统一个library和interpreter。虚拟环境的好处是避免了不同Python程序间的互相影响(共同使用global library 和 interpreter),例如程序A需要某个库的1.0版本,而程序B需要同样这个库的2.0版本,如果程序B执行则A就不能执行了。

Virtual Environment是一款工具,Pycharm中集成了,用以创建独立的虚拟环境。Virtual Environment主要解决的库依赖和版本依赖、以及间接授权等问题。

推荐使用虚拟环境

上面两种解释器的区别:
一个是本地环境
一个把环境打包隔离了

3. conda Enviroment
如果你的电脑中安装了Anaconda软件,也可以使用Anaconda里面附带安装的Python解释器,和第一种使用本地解释器类似

4. 本地创建虚拟环境
如果没有安装Pycharm,只安装了轻量级编辑器,比如Geany等。
也可以本地创建虚拟环境,只需要安装virtualenv包即可

virtualenv,是一款Python工具,用以创建独立的Python虚拟环境。在一个Python虚拟环境中,持有Python所必须的依赖库,形成Python的虚拟运行空间。

virtualenv的使用方法如下:

1.通过pip安装virtualenv的命令:
pip install virtualenv

2.创建虚拟环境my_venv的命令:
virtualenv my_venv
virtualenv会创建一个目录my_venv,其中包含:
所有Python的可执行文件,以使用Python项目所需的软件包;
pip类库的副本,以在必要的时候用以安装其他软件包。
my_venv目录结构:
lib/,包含虚拟环境中后续安装的软件包
include/,包含支持Python的类库
bin/,可执行文件
python,可执行python的命令文件
pip,辅助安装其他软件包的命令文件
setuptools

3.创建虚拟环境my_venv,指定要使用的Python版本,命令:
virtualenv -p /usr/bin/python2.7 my_venv
或者在~/.bashrc文件中设置环境变量VIRTUALENVWRAPPER_PYTHON=/usr/bin/python2.7

4.创建虚拟环境my_venv,使用已有的全局软件包,即虚拟环境中不包含全局软件包,命令:
virtualenv --no-site-packages my_venv
从virtualenv 1.7开始,默认不包含全局软件包;
全局软件包默认位于/usr/lib/python_version/site-packages

5.创建虚拟环境my_venv,继承全局软件包,即虚拟环境中包含全局软件包,命令:
virtualenv --system-site-packages my_venv

6.进入虚拟环境my_venv所在的目录,首先激活该运行环境:
source my_venv/bin/activate
成功激活虚拟环境,可以看到命令行提示符发生变化。这样,后续的操作都是针对当前的虚拟环境进行的,不会影响其他运行环境。

7.在激活的虚拟环境中,通过pip安装其他必要的软件包:
pip install other_package

8.最后,注销当前已经被激活的虚拟环境:
deactivate

9.删除虚拟环境,只要删除其目录即可:
rm -rf my_venv

10.为了保留虚拟环境中的安装配置,可以将其输出到备份文件中,命令如下:
pip freeze > requirements.txt

11.在需要的时候,可以将其还原到虚拟环境中,命令如下:
pip install -r requirements.txt

虚拟环境创建及解释器设置详见我的另外两篇文章:

Pycharm 2018 虚拟环境创建及解释器的设置(小白图解教程)
https://blog.csdn.net/u011318077/article/details/86251511

WIN10系统下的Python3.7 安装虚拟环境virtualenv和创建Web网站
https://blog.csdn.net/u011318077/article/details/85235544

Python 全栈工程师核心面试 300 问深入解析(2020 版)----全文预览
Python 全栈工程师核心面试 300 问深入解析(2020 版)----欢迎订阅
### PyCharmConda 解释器与 TensorFlow 解释器区别 在开发环境中配置合适的 Python 解释器对于项目成功至关重要。PyCharm 支持多种类型的解释器,其中包括基于 AnacondaConda 解释器以及专门为支持 TensorFlow 而设置的解释器。 #### Conda 解释器的特点 Conda 是一个开源软件包管理环境管理系统,适用于各种编程语言,特别是 Python R。它允许创建独立的虚拟环境来管理不同项目的依赖关系[^1]。当在 PyCharm 中使用 Conda 解释器时: - 可以轻松安装、更新删除库; - 提供了一个简单的方法来切换不同的 Python 版本; - 使用 `py -3 -m pip install <package>` 或者通过图形界面完成包管理操作; ```bash # 创建新的 conda 环境并激活 conda create --name myenv python=3.8 conda activate myenv ``` #### TensorFlow 解释器的特点 TensorFlow 解释器通常是指已经预先集成了 TensorFlow 库及其相关依赖项的一个特定 Python 环境或发行版。这种预构建的方式简化了机器学习开发者的工作流程,因为不需要手动处理复杂的依赖树。具体来说,在 PyCharm 中应用 TensorFlow 解释器意味着: - 自动包含了最新稳定版本的 TensorFlow 库以及其他常用的科学计算工具; - 减少了因不兼容而导致的问题风险; - 对于 GPU 加速的支持更加友好,可以直接利用 NVIDIA CUDA 工具链; ```python import tensorflow as tf print(tf.__version__) ``` 尽管两者都能很好地服务于各自的用途,但是选择哪一个取决于具体的项目需求个人偏好。如果主要关注数据科学领域,则可能更倾向于采用功能全面且灵活度高的 Conda 解释器;而对于专注于深度学习的应用场景而言,专门定制过的 TensorFlow 解释器或许会带来更大的便利性。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值