快速幂求A^BmodC

以前真心没怎么学过快速幂,只是听过,知道大致的思路,主要就是求A^BmodC的题目。就是将B依次除以2,即求A^(B/2)modC,依次类推,之前我一直纳闷,比如求45^67mod89吧,应该是先算45^33mod89,45^33mod89比较难算,再分,45^16mod89,45^8mod89,45^4mod89,45^2mod89,45^1mod89,如此再反过来算,感觉很麻烦,之前我一直都是用一个数组记录modC的余数,根据数学学的,除以C取余,余数一共有C个,即0,1,2,3,4,……C-1,所以数组的大小只跟C有关,用一个for循环,得出余数数组,循环过程中肯定会重复,当重复的时候或结果为0的时候,即可break,之后用B除以数组的长度,余数为k,即可得到A^BmodC的结果了为a【k-1】,代码如下

#include<stdio.h>
#define n 32768
main()
{
int a,b,c,i,j,d[n];
    while(scanf("%d %d %d",&a,&b,&c)!=EOF)
{
for(i=0;i<n;i++)
{
if(i==0)
d[0]=a%c;
else
{
d[i]=(a*d[i-1])%c;
if(d[i]==d[0]||d[i]==0)
break;
}
}
        j=b%i;
if(d[i]==0)
printf("0\n");
else
if(j==0)
printf("%d\n",d[i-1]);
else
printf("%d\n",d[j-1]);
}
}

但是当c很大时,可能会超出范围,所以就考虑用快速幂的方法做,代码如下

#include<stdio.h>
#define n 32768
main()
{
int a,b,c,j;
    while(scanf("%d %d %d",&a,&b,&c)!=EOF)
{
j=1;
while(b>0)
{
if(b%2!=0)
j=(j*a)%c;
b=b/2;
a=(a*a)%c;
}
printf("%d\n",j);
}
}

看上去简单了很多,可以不用递归调用。

而快速幂的时间复杂度为O(log2N)。比较实用。













评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值