AI智能体实战|使用扣子Coze搭建AI智能体,看这一篇就够了(新手必读)

有朋友看到我使用Coze搭建的AI智能体蛮实用的,也想自己尝试一下。那今天我就分享一下如何使用Coze(扣子)搭建AI智能体,手把手教学,流程超级详细,学会了的话,欢迎分享转发!

图片

一、搭建AI智能体


1、创建智能体

登录Coze平台(https://www.coze.cn),点击左侧+号“创建智能体”。

图片

按要求填写智能体信息,图标可以通过AI自动生成,也可以本地上传图片,填写完成后,点击“确认”按钮。


2、编写提示词(Prompt)

进入智能体的编辑页面,编辑页分为三个区域:左侧是编排,可以选择运行模式及填写人设与回复逻辑;中间是工具,可以选择大语言模型及工具;右侧是调试,验证是否达预期效果。

运行模式支持“单Agent(LLM模式)”、“单Agent(工作流模式)”、“多Agents”,按官方说法“单Agent(LLM模式)”和“单Agent(工作流模式)”是适合处理简单逻辑,“多Agents”适合处理复杂逻辑。咱们先创建个简单的智能体,所以选择“单Agent(LLM模式)”。

Coze中的大语言模型(LLM)支持豆包、通义、智谱等,我这选择Coze自带的“豆包·Function call模型”,你也可以调整成其它模型。推荐选32K,32K指的是能处理的上下文长度,一般32K适合处理长文档和复杂任务。

图片

在编辑页左侧的“人设与回复逻辑”框,填写智能体的提示词,提示词内容与智能体功能相关,填写完成后,可点击右上角的“优化”按钮,让Coze帮你优化一下提示词。

比如我填写了“你是AI助手,善长总结和聊天”,点击优化后得到的提示词是按角色、技能、限制3方面描述的,我们可继续根据自己需求修改完善。


3、给智能添加技能

给智能体添加开场白,这样用户体验更好。开场白支持插入图片、链接,设定文本格式等,按自己需求调整。

图片

也可以增加语音功能,让智能体直接语音聊天,我希望中文和英文都能聊,所以我加了中文与英文的音色。

图片


4、预览与调试

智能体提示词和技能添加完成后,可以在编辑页右侧“预览与调试”界面,测试是否符合预期。

图片

比如 测试语音聊天,可以点击通话后用中文或英文跟智能体聊天,他也相应会以中文或英文回复。

图片


5、发布智能体

调试确认Bot功能正常后,点击右上角的“发布”按钮,发布Bot。

发布时填写发布记录(非强制),选择发布平台,默认是“扣子智能体商店”,勾选完成后,点击右上角的“发布”按钮。

图片

二、使用AI智能体


1、查看智能体

发布完成后,在工作空间--个人空间--项目开发,可以看到刚才发布的的 Bot。

图片

在智能体商店搜索:“伟贤的个人AI助手”,可以搜到。

图片


2、使用智能体

自己与发布后的智能体进行对话,测试功能是否正常。没有问题就可以把链接发给朋友试试哦~

图片

三、总结

本文介绍了如何使用 Coze 搭建 AI 智能体的步骤,包括创建智能体(登陆平台点击 “创建智能体” 并填写信息)、编写提示词(选择运行模式和大语言模型,填写并优化提示词)、添加技能(设置开场白)、预览与调试、发布智能体(填写发布记录选择发布平台)以及使用智能体(查看和测试)。

👆👆👆👆👆👆

这段总结就是小助手生成的,你觉得怎么样?

如果看完还没学会的话,可以私信我。学会了的话,欢迎转发分享给你的朋友们。

AI智能体实战|能不能生成可直接下载的pdf文档呢?

10分钟创建一个英文精读智能体,实现中英翻译、提炼生僻词汇等

### Coze 智能体简介 Coze 是一种基于人工智能技术开发的智能体工具,旨在帮助用户快速构建和部署 AI 应用程序。通过 Coze 平台,开发者可以轻松创建诸如聊天机器人、知识库管理器以及自动化流程处理等功能强大的应用[^1]。 该平台支持多种应用场景,例如将抖音短视频的内容转化为适合小红书发布的笔记形式,从而简化跨平台内容分发的工作流。此外,它还提供了丰富的 API 和插件扩展功能,使得开发者能灵活定制满足特定需求的应用解决方案。 ### Coze 智能体的技术特点 #### 1. **模块化设计** - Coze 的核心架构采用模块化设计理念,允许用户根据实际项目需求自由组合不同组件来搭建专属智能体。 - 数据采集模块负责从外部源获取原始数据并进行初步清洗处理; - 自然语言理解 (NLU) 组件用于解析用户的输入意图及其背后含义; - 对话管理系统则控制整个交互过程中的状态流转逻辑;最后由响应生成单元依据上下文环境给出恰当回复。 ```python from coze import NLU, DialogManager, ResponseGenerator nlu = NLU() dialog_manager = DialogManager() response_generator = ResponseGenerator() def process_user_input(user_message): intent, entities = nlu.parse(user_message) dialog_state = dialog_manager.update(intent, entities) response_text = response_generator.generate(dialog_state) return response_text ``` #### 2. **易用性强** - 针对初学者或者非技术人员群体,官方文档中详细描述了每一步操作指南,并附带大量实例演示视频辅助学习掌握基本技能。 #### 3. **开放生态体系** - 不仅限于内置的功能选项,Coze 还积极鼓励社区贡献者提交自己的创意作品到公共仓库供他人借鉴参考。这种协作模式极大地促进了技术创新与发展速度加快的同时也降低了新成员加入门槛。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值