CSP信奥赛新增的算法-马拉车算法(Manacher‘s Algorithm)

适合小学六年级的同学理解马拉车算法(Manacher’s Algorithm),我们会用有趣的故事和简单代码来解释。

一、故事理解:用镜子找宝藏 🔍

假设我们要在字符串中找到最长的回文(正反读都一样的字符串),比如在字符串 S = "abba" 中找最长回文:

  1. 插入分隔符:把字符串变成 T = "#a#b#b#a#"

    • 作用:统一奇偶长度的回文查找
    • 就像在字符之间放镜子,方便反射观察
  2. 维护三个法宝

    • C:当前回文的中心(像灯塔)
    • R:已知回文的最右边界(像地图边界)
    • P[i]:每个位置的回文半径(记录每个点的能量)
  3. 镜面反射技巧

    • 当探测新位置i时,用C的镜像位置mirror = 2*C - i直接复制半径
    • 像用镜子快速复制已知信息,避免重复计算

二、C++代码实现 🖥️

#include <iostream>
#include <vector>
using namespace std;

string longestPalindrome(string s) {
    if (s.empty()) return "";

    // 1. 插入分隔符(变成奇数长度)
    string T = "#";
    for (char c : s) {
        T += c;
        T += '#';
    }

    int n = T.size();
    vector<int> P(n, 0); // 每个中心的回文半径
    int C = 0, R = 0;    // 当前中心和右边界
    int maxLen = 0, center = 0;

    for (int i = 0; i < n; i++) {
        // 2. 找镜像位置,快速获得初始半径
        int mirror = 2 * C - i;
        if (i < R) {
            P[i] = min(R - i, P[mirror]);
        }

        // 3. 中心扩展
        int left = i - (P[i] + 1);
        int right = i + (P[i] + 1);
        while (left >= 0 && right < n && T[left] == T[right]) {
            P[i]++;
            left--;
            right++;
        }

        // 4. 更新中心和边界
        if (i + P[i] > R) {
            C = i;
            R = i + P[i];
        }

        // 5. 记录最大值
        if (P[i] > maxLen) {
            maxLen = P[i];
            center = i;
        }
    }

    // 转换回原字符串位置
    int start = (center - maxLen) / 2;
    return s.substr(start, maxLen);
}

int main() {
    string s = "abba";
    cout << "最长回文子串:" << longestPalindrome(s) << endl;
    return 0;
}

三、关键步骤图解 🎨

以输入 "abba" 为例:

步骤操作T字符串P数组变化
1插入分隔符#a#b#b#a#初始化全0
2i=1时中心扩展找到半径1P[1]=1
3i=4时发现最长回文半径4(实际长度4)P[4]=4
4转换回原字符串abba最终结果

四、复杂度分析 ⚡

  • 时间复杂度:O(n) → 比暴力法O(n²)快得多
  • 空间复杂度:O(n) → 存储每个位置的半径

关键技巧:通过镜像反射避免重复计算,像用镜子复制已知信息!

### 初级 CSP 息学奥林匹克竞赛 (CSP-J) 中的选择排序算法真题解析 #### 选择排序简介 选择排序是一种简单直观的排序算法。其基本思想是从待排序序列中选出最小(或最大)元素,并将其放到已排序序列的一端;然后从未排序部分继续寻找最小(或最大)元素,放入已排序序列的另一端,依次类推直到所有元素都排好序。 **时间复杂度**: O(n^2),其中 n 表示数组长度。 **空间复杂度**: O(1),因为只需要常数级别的额外存储空间。 #### 真题实例分析 下面是一道来自初级 CSP 的选择排序题目: --- **题目描述** 给定一个包含 n 个整数的数组 a[],请你编写程序对它进行升序排列并输出结果。你可以使用任意一种稳定的内部排序算法完成任务,但这里我们特别推荐您尝试实现 **选择排序** 来解答本题。 输入格式: 第一行是一个正整数 T,表示测试数据组数; 对于每组测试数据, - 第一行有一个正整数 n (1 ≤ n ≤ 100) - 接下来有 n 个空格分隔开来的非负整数 ai (0 ≤ ai < 50) 输出格式: 针对每一组测试案例,在单独一行上打印出经过升序处理后的数字列表,相邻两个数之间用单个空格分割开来。 样例输入: ``` 2 4 98 36 74 12 5 3 7 9 1 5 ``` 样例输出: ``` 12 36 74 98 1 3 5 7 9 ``` 解法提示: 为了简化问题难度并且更贴近考试实际场景,您可以考虑采用最基础版本的选择排序来做这道题——即每次从尚未排序的部分找到当前范围内值最小的那个位置 k ,再把它跟未排序的第一个位置交换即可达到目的。 参考代码(Python 版本为例): ```python def selection_sort(arr): for i in range(len(arr)): min_idx = i # 寻找未排序区间内的最小值下标 for j in range(i+1, len(arr)): if arr[j] < arr[min_idx]: min_idx = j # 将找到的最小值换到前面去 arr[i], arr[min_idx] = arr[min_idx], arr[i] T = int(input()) for _ in range(T): n = int(input()) # 输入n个整数的数量 nums = list(map(int, input().split())) selection_sort(nums) print(" ".join(str(num) for num in nums)) ``` 此段 Python 实现了上述提到的经典选择排序过程,并按照题干要求完成了多次测试的数据读入、排序及展示功能。注意每个细节之处是否满足原题设定条件!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Da_秀

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值