针对**“最大子段和”**问题的详细分步解析与程序实现,通过动态规划将大问题分解为小问题:
一、问题拆解步骤
1. 明确问题定义
大问题:在数组[-2,1,-3,4,-1,2,1]
中,找到连续子数组的和的最大值。
小问题:以每个位置i
结尾的子数组能得到的最大和。
2. 状态定义
- 定义数组:
dp[i]
表示以第i
个元素结尾的子数组的最大和 - 物理意义:每个
dp[i]
都代表一个局部最优解
3. 初始条件
位置 | dp值 | 解释 |
---|---|---|
0 | -2 | 只能包含第一个元素-2 |
4. 状态转移方程
递推逻辑:
对每个元素nums[i]
,选择是否延续前一个子数组或重新开始:
dp[i] = max(nums[i], dp[i-1] + nums[i])
二、分步程序实现
#include <iostream>
#include <algorithm> // 使用max函数
using namespace std;
int main