信奥赛CSP动态规划入门-最大子段和

针对**“最大子段和”**问题的详细分步解析与程序实现,通过动态规划将大问题分解为小问题:


一、问题拆解步骤

1. 明确问题定义

大问题:在数组[-2,1,-3,4,-1,2,1]中,找到连续子数组的和的最大值
小问题:以每个位置i结尾的子数组能得到的最大和。

2. 状态定义
  • 定义数组dp[i] 表示以第i个元素结尾的子数组的最大和
  • 物理意义:每个dp[i]都代表一个局部最优解
3. 初始条件
位置 dp值 解释
0 -2 只能包含第一个元素-2
4. 状态转移方程

递推逻辑
对每个元素nums[i],选择是否延续前一个子数组或重新开始:

dp[i] = max(nums[i], dp[i-1] + nums[i])

二、分步程序实现

#include <iostream>
#include <algorithm>  // 使用max函数
using namespace std;

int main
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Da_秀

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值