2.1-2.2 模型评估与选择

误差(error):学习器的实际预测输出与样本的真实输出之间的差异。
训练误差(或经验误差):学习器在训练集上的误差(training error)、(empirical error)。
泛化误差:学习器在新样本上的误差(generalization error)。
=> 希望得到泛化误差小的学习器,但能做的是让训练误差尽量小。
欠拟合与过拟合,与学习器的学习能力有关。( 这 里 的 学 习 能 力 是 否 “ 过 于 强 大 ” , 是 由 学 习 算 法 和 数 据 内 涵 共 同 决 定 的 。 \red{这里的学习能力是否“过于强大”,是由学习算法和数据内涵共同决定的。}
参考这篇

学习算法、参数配置=> “模型选择”问题

评估方法
训练集S、测试集T

模型选择,需要使用“测试集”(testing set)来测试学习器对新样本的判别能力,然后以测试集上的“测试误差”作为泛化误差的近似。
假设:测试样本也是从样本的真实分布中,独立同分布采样得到的。
现实任务中会考虑: 泛 化 误 差 、 时 间 开 销 、 存 储 开 销 、 可 解 释 性 等 \red{泛化误差、时间开销、存储开销、可解释性等}

对数据集D中的m个样例,如何分开训练集和测试集呢?
有几种方法:

  • 留出法(hold-out)
  • 交叉验证法(cross validation)
  • 自助采样法(bootstrapping)/可重复采样/可放回采样——>‘包外估计’、估计偏差
    参考这篇

模型调参

ML中涉及两类参数:

  • 算法参数:亦称超参数,人为指定候选值,数目较少。
  • 模型参数:数目可能很多,通过学习过程中产生候选值。

因为训练中仅使用部分数据集,则在模型选择完后,学习算法和参数配置都已确定,此时应该用D重新训练模型,使用全部m个样本,再最终提交。

  • 训练集:模型学习使用的数据集
  • 验证集:训练数据划分为训练集和验证集,验证集上的性能进行模型选择与调参。
  • 测试集:评估模型在实际使用时的泛化能力

性能度量
------ 均方误差

  • 错误率与精度
  • 查准率与查全率
  • 在这里插入图片描述

==> 加权调和平均 F β F_{\beta} Fβ(书中32页) 比算术平均( P + R 2 \frac{P+R}{2} 2P+R)和几何平均( P ∗ R \sqrt{P*R} PR )更重视较小值。
其中当 β \beta β为1时退化为标准的F1度量。

当有多个二分类混淆矩阵时,有两种平均策略:

  • 宏marco-P-R-F1:每个先计算自己的P-R,取均值后算F1
  • 微 micro-P-R-F1:将矩阵加起来平均,再计算P-R-F1
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值