【noip】联合权值 搜索

12 篇文章 0 订阅

把14年提高也做了,这是day1第二题

联合权值

描述

无向连通图 G 有 n 个点,n-1 条边。点从 1 到 n 依次编号,编号为 i 的点的权值为 WiWi, 每条边的长度均为 1。图上两点(u, v)的距离定义为 u 点到 v 点的最短距离。对于图 G 上的点对(u, v),若它们的距离为 2,则它们之间会产生Wu×Wv的联合权值。
请问图 G 上所有可产生联合权值的有序点对中,联合权值最大的是多少?所有联合权值之和是多少?

输入

第一行包含 1 个整数 n。
接下来 n-1 行,每行包含 2 个用空格隔开的正整数 u、v,表示编号为 u 和编号为 v 的点 之间有边相连。
最后 1 行,包含 n 个正整数,每两个正整数之间用一个空格隔开,其中第 i 个整数表示 图 G 上编号为 i 的点的权值为WiWi。

输出

输出共 1 行,包含 2 个整数,之间用一个空格隔开,依次为图 G 上联合权值的最大值 和所有联合权值之和。由于所有联合权值之和可能很大,输出它时要对10007取余。

样例输入

5
1 2
2 3
3 4
4 5
1 5 2 3 10

样例输出

20 74

限制

对于 30%的数据,1 < n ≤ 100;
对于 60%的数据,1 < n ≤ 2000;
对于 100%的数据,1 < n ≤ 200,000,0 < WiWi ≤ 10,000。

提示

图片
本例输入的图如上所示,距离为 2 的有序点对有(1,3)、(2,4)、(3,1)、(3,5)、(4,2)、(5,3)。 其联合权值分别为 2、15、2、20、15、20。其中最大的是 20,总和为 74。

来源

NOIP2014 提高组 Day1
图片来源vijos P1906

这道题着实把我坑了一把,一来没想到怎么做,暴力dfs,按理说可以过70%,全WA了,又加个暴力hash,还是一个没对。。

正解其实有以下几个:
1、这是一个树,直接枚举每个节点的儿子,将儿子们 的w与爸爸和他们自己相乘,乱搞。
2、这是一个树,据说还可以用树规来做,我没试过。
3、直接把所有边排序,然后从第一个点扫,可以很容易的把每个点相连的点求出来,然后让所有与自己相邻的点互乘,也可以出结果。

我用的第三个方法,因为最好写,理解起来也很容易,就是枚举中间的那个点,然后再把所有与它相连的乘起来,但这个时候还有一个要注意的就是不能直接相乘,不然要T,可以用数学的方法优化,优化的方法有很多,我这里介绍一个。
这个方法言语不好解释,直接放代码,很简单,一看再在纸上模拟一下就很容易明白了。

int s=0;
for(int i=1;i<=k;i++)
{
    sum=(sum+s*r[i])%P;
    s=(s+r[i])%P;
}

大概就是这样,下面直接放代码,这个题只要理解了其实一点也不难。。。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#define P 10007
#define M 2000005
using namespace std;

struct link
{
    int u,v,w;
}l[M];

int n,t,ans,sum,r[M],w[M];

bool com(link a,link b)
{
    return  a.u>b.u;
}

void work(int k)
{
    int s=0;
    for(int i=1;i<=k;i++)
    {
        sum=(sum+s*r[i])%P;
        s=(s+r[i])%P;
    }
    int mx1=0,mx2=0,x=0;
    for(int i=1;i<=k;i++)
    {
        if(r[i]>mx1)
        {
            mx1=r[i];
            x=i;
        }
    }
    for(int i=1;i<=k;i++)
        if(i!=x)mx2=max(mx2,r[i]);
    ans=max(ans,mx1*mx2);
}

int main()
{
    cin>>n;
    for(int i=1;i<n;i++)
    {
        scanf("%d%d",&l[i*2].u,&l[i*2].v);
        l[i*2-1].v=l[i*2].u;
        l[i*2-1].u=l[i*2].v;
    }

    for(int i=1;i<=n;i++)scanf("%d",&w[i]);
    sort(l+1,l+2*n+1,com);
    int j=0;
    for(int i=1;i<=2*n;i++)
    {
        if(i==1||l[i].u==l[i-1].u)
            r[++j]=w[l[i].v];
        else
        {
            work(j);
            j=0;
            r[++j]=w[l[i].v];
        }
    }
    work(j);
    sum=(sum*2)%P; 
    cout<<ans<<' '<<sum;
}

如果有什么问题,或错误,请在评论区提出,谢谢。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值