【bzoj1827】[Usaco2010 Mar]gather 奶牛大集会 贪心 树规

12 篇文章 0 订阅
4 篇文章 0 订阅

题目描述

Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会。当然,她会选择最方便的地点来举办这次集会。每个奶牛居住在 N(1<=N<=100,000) 个农场中的一个,这些农场由N-1条道路连接,并且从任意一个农场都能够到达另外一个农场。道路i连接农场A_i和B_i(1 <= A_i <=N; 1 <= B_i <= N),长度为L_i(1 <= L_i <= 1,000)。集会可以在N个农场中的任意一个举行。另外,每个牛棚中居住着C_i(0 <= C_i <= 1,000)只奶牛。在选择集会的地点的时候,Bessie希望最大化方便的程度(也就是最小化不方便程度)。比如选择第X个农场作为集会地点,它的不方便程度是其它牛棚中每只奶牛去参加集会所走的路程之和,(比如,农场i到达农场X的距离是20,那么总路程就是C_i*20)。帮助Bessie找出最方便的地点来举行大集会。

输入

第一行:一个整数N
第二到N+1行:第i+1行有一个整数C_i
第N+2行到2*N行,第i+N+1行为3个整数:A_i,B_i和L_i。

输出

一个数字表示答案

样例

Input

5
1
1
0
0
2
1 3 1
2 3 2
3 4 3
4 5 3

Output

15
对于
20%数据n<20
50%数据 n<2000
100%数据n<100,000

这道题现在bzoj上好像没有了,不管那么多,我们直接来看题。
这个就是一道容易想多的题,它给的数据100000,但最后写出来是 O(n) 的,很容易就会想多,认为自己做错了,实际上第一题就是贪心。
我们保存两个值,第一个是这个节点还有它的儿子一共的奶牛数,还有一个就是所有它下面的点走到它这个位置的疲劳值,这些全部dfs一遍就可以完成,复杂度 O(n)
然后就是贪心,我们从根节点向下贪心,这样所有的结点都可以被访问,我们就扫一遍所有儿子,如果在某个儿子向下走会比当前节点更优就向下走(这里只会最多有一个更优,易证明,如果要更优,那么这颗儿子对应子树的奶牛数一定大于整棵树的一半),走不动了就直接返回当前节点,中途顺便就可以把疲劳值什么的算出来,直接输出就可以了。
最后一个,注意范围,ll大法好。

然后这道题不算难,下面直接给出我的代码。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<set>
#include<queue>
#include<algorithm>
#include<vector>
#include<cstdlib>
#include<cmath>
#include<ctime>
#define ll long long
#define M 100005

using namespace std;

struct tree2
{
    int fa,d;
    ll num,sum;
    vector<int>son;
}tree[M];

int d[M],n,root,ans_point;
ll ans;

int get_root(int x)
{
    while(tree[x].fa!=0)x=tree[x].fa;
    return x;
}

int bo[M];

void get_num(int x)
{
    tree[x].num=d[x];
    for(int i=0;i<tree[x].son.size();i++)
    {
        int s=tree[x].son[i];
        get_num(s);
        tree[x].num+=tree[s].num;
        tree[x].sum+=tree[s].sum+tree[s].num*tree[s].d;
    }
}

ll get_ans()
{
    int pos=root,add_num=0,i,s;
    ll ans=tree[root].sum;
    for(;;)
    {
        for(i=0;i<tree[pos].son.size();i++)
        {
            s=tree[pos].son[i];
            if(tree[s].num>=(tree[pos].num-d[pos])/2)
            {
                add_num=add_num+tree[pos].num-tree[s].num;
                if(add_num>tree[s].num)return ans;
                else
                {
                    ans=ans-tree[s].num*tree[s].d+add_num*tree[s].d;
                    break;
                }
            }
        }
        if(i==tree[pos].son.size())return ans;
        pos=s;
    }

}

int main()
{
    freopen("A.in","r",stdin);
    freopen("A.out","w",stdout);
    cin>>n;
    for(int i=1;i<=n;i++)scanf("%d",&d[i]);
    for(int i=1;i<n;i++)
    {
        int a,b,d;
        scanf("%d%d%d",&a,&b,&d);
        if(!bo[b])
        {
            tree[a].son.push_back(b);
            tree[b].fa=a;
            tree[b].d=d;
            bo[b]=1;
        }
        else
        {
            tree[b].son.push_back(a);
            tree[a].fa=b;
            tree[a].d=d;
            bo[a]=1;
        }
    }
    root=get_root(1);
    get_num(root);
    cout<<get_ans();
}

大概就是这个样子,如果有什么问题,或错误,请在评论区提出,谢谢。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值