【奶牛大集会】解题报告

可以参考汪伟正和梁旭罡的博客

Problem 1 :奶牛大集会
 
Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会。当然,她会选择最方便的地点来举办这次集会。
每个奶牛居住在 N(1<=N<=100,000) 个农场中的一个,这些农场由N-1条道路连接,并且从任意一个农场都能够到达另外一个农场。道路i连接农场A_i和B_i(1 <= A_i <=N; 1 <= B_i <= N),长度为L_i(1 <= L_i <= 1,000)。集会可以在N个农场中的任意一个举行。另外,每个牛棚中居住者C_i(0 <= C_i <= 1,000)只奶牛。
在选择集会的地点的时候,Bessie希望最大化方便的程度(也就是最小化不方便程度)。比如选择第X个农场作为集会地点,它的不方便程度是其它牛棚中每只奶牛去参加集会所走的路程之和,(比如,农场i到达农场X的距离是20,那么总路程就是C_i*20)。帮助Bessie找出最方便的地点来举行大集会。
考虑一个由五个农场组成的国家,分别由长度各异的道路连接起来。在所有农场中,3号和4号没有奶牛居住。
      1     3     4     5
      @--1--@--3--@--3--@[2]
     [1]    |
            2
            |
            @[1]
            2
Bessie可以在五个农场中的任意一个举办集会,下面就是在每个位置举办集会的不方便值的统计表。
  集会地点    -----  不方便程度  ------
              B1  B2  B3  B4  B5   Total
     1         0   3   0   0  14    17
     2         3   0   0   0  16    19
     3         1   2   0   0  12    15
     4         4   5   0   0   6    15
     5         7   8   0   0   0    15
如果Bessie在农场1举办集会,那么每个农场各自的不方便值分别是
      农场 1     0 -- 到达不需要时间!
      农场 2     3 -- 总的距离是 2+1=3  x 1 奶牛 = 3
      农场 3     0 -- 没奶牛!
      农场 4     0 -- 没奶牛!
      农场 5    14 -- 总的距离是 3+3+1=7 x 2 奶牛 = 14
因此,总的不方便值是17。
最小的不方便值是15,当在3号,4号或者5号农场举办集会的时候。
 
题目名称: gather
输入格式
* 第一行:一个整数N
 
* 第二到N+1行:第i+1行有一个整数C_i
* 第N+2行到2*N行,第i+N+1行为3个整数:A_i,B_i和L_i。
 
样例输入(gather.in):
 
5
1
1
0
0
2
1 3 1
2 3 2
3 4 3
4 5 3
 
输出格式:
* 第一行:一个值,表示最小的不方便值。
 
样例输出(gather.out):
15


30%的数据n<=20

50%的数据n<=5000

80%的数据n<=50000

100%的数据n<=100000

 


这道题对于我当时难度较大。大家一般都用的dfs,过4组,我用的多次最短路prim,过3组。

这道题理解花了很多时间


考试的时候有想到是带权中位数,但是因为是树,而且子树个数不清楚,而带权中位数以前都是用在直线上的,因此没有继续深究。

后来知道了带权中位数也可以应用在树上。


首先一个非常重要的结论,就是带权中位数一定在某一个点上(证明略),因此如果每一个子节点上能够得到更优解就果断移动到这个节点上,最终肯定能够移动到带权中位数那个节点。


随便找一个点(如1)作为根,用一次深搜或者广搜,后序求出所有子树的奶牛数量(包括总奶牛数),并前序求出每个节点到这个根的距离。同时维护出复杂度。然后再进行一次dfs(即为移动的过程),移动到复杂度最小的点。

(我卡在了这一个地方,我担心有环,两次dfs的条件又不同,建出来的树就不同,导致维护的奶牛数量有错。但是我又错了,梁旭罡讲了才明白,因为忘了N个点,N-1条边,每两个点互相连通。这已经时给出了一棵唯一的树了)(经常都是这种担心。。。没由头的,结果仔细看题才发现题弄错了)

(我还卡在了一个地方,就是子树个数不明确,我以为向某个方向移动,要求出代价变化,要计算每一棵子树,时间代价就高了。想了很久恍然大悟,其他的子树中牛的数量用总数减去这棵子树的数量就行了)


我觉得抽象出来就是,一棵子树代表一个方向,左或右,然后其他所有子树就代表另一个方向,左或右。

然后理清思路之后这道题就不难了,代码实现也不复杂。


但是不熟练,以后还要再拿出来做


(另外重要的,类型不同时,必须先进行转换,再进行运算,否则容易超界,另外如long long常数要在末尾加上ll)


AC程序


#include <cstdio>
#include <cstdlib>
#include <iostream>

typedef long long ll;
/*                                                                                *\
    long long不能用printf
    才能过  
    弄懂之后提交次次
    第一次 wa70
    第二次~第五次 wa70
        ans -= (long long)(ths->pow)*(long long)((amount[ths->index]<<1)-amount[1]);
        必须先转换再运算,不能先运算再转换,否则超界!!
\*                                                                                */

struct tnode
{
    long index;
    tnode* next;
    long pow;
};


long n;
long c[100100];
tnode* farm[100100];
long amount[100100];
long long ans = 0;
long long dist[100100];
bool visited[100100];
/*
void bfs()
{
    visited[1] = true;
    long l=0;long r=0;
    que[++r].dist = 0;
    que[r].index = 1;
    while (l<r)
    {
        B& now = que[++l];
        tnode* ths = farm[now.index];
        while (ths)
        {
            if (!visited[ths->index])
            {
                que[++r].index = ths->index;
                que[r].dist = now.dist+ths->pow;
                amount[ths->index] = amount[now.index]+c[ths->index];
                ans += amount[ths->index] *  que[r].dist;
                visited[ths->index] = true;
            }
            ths = ths->next;
        }
    }
}
*/
void insert(long a,long b,long c)
{
    tnode* nnode = new tnode;
    nnode->index = b;
    nnode->pow = c;
    nnode->next = farm[a];
    farm[a] = nnode;
}

void work(long l)
{
    tnode* ths = farm[l];
    while (ths)
    {
        if (!visited[ths->index]&&(amount[ths->index]<<1)-amount[1]>0)
        {
            ans -= (long long)(ths->pow)*(long long)((amount[ths->index]<<1)-amount[1]);
            visited[ths->index] = true;
            work(ths->index);
            visited[ths->index] = false;
        }
        ths = ths->next;
    }
}
/*                        *\
    因为没有环(n-1条边)
    所以不管怎样建的树
    是唯一的
\*                        */

long dfs(long l,long long s)
{
    tnode* ths=farm[l];
    dist[l] = s;
    amount[l] = c[l];
    ans+=c[l]*s;
    while (ths)
    {
        if (!visited[ths->index])
        {
            visited[ths->index] = true;
            amount[l] += dfs(ths->index,s+ths->pow);
        }
        ths = ths->next;
    }

    return amount[l];
}

int main()
{
    freopen("gather.in","r",stdin);
    freopen("gather.out","w",stdout);
    scanf("%ld",&n);
    for (long i=1;i<n+1;i++)
        scanf("%ld",c+i);
    for (long i=1;i<n;i++)
    {
        long a;long b;long l;
        scanf("%ld %ld %ld",&a,&b,&l);
        insert(a,b,l);
        insert(b,a,l);
    }
    /*                *\
        随便找的一
        个点作为根
    \*                */
    /*bfs();
    for (long i=2;i<n+1;i++)
    {
        visited[i] = false;
    }*/
    visited[1] = true;
    dfs(1,0);
    for (long i=2;i<n+1;i++)
    {
        visited[i] = false;
    }
    visited[1] = true;
    work(1);
    std::cout << ans;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值