uva 10780 - Again Prime? No Time.(数论)

942 篇文章 2 订阅
202 篇文章 0 订阅
该博客介绍了UVA 10780数论问题的解决方案。题目要求计算n!中包含m作为因子的个数。解题方法涉及将m和1到n的数分解质因数,并计算确保m出现的最小次数。
摘要由CSDN通过智能技术生成

题目链接:uva 10780 - Again Prime? No Time.


题目大意:给定m和n,计算n!中有多少个因子m。


解题思路:将1~n分解质因子,然后在将m分解,对应每个因子计算说可以保证的个数,维护最小值。


#include <stdio.h>
#include <string.h>
#include <math.h>

#define min(a,b) (a)<(b)?(a):(b)

const int N = 10005;
const int INF = 0x3f3f3f3f;

int n, m, c[N];

void div (int k) {
	int t = ceil(sqrt(k));
	for (int i = 2; i <= k && i <= t; i++) {
		while (k % i == 0) {
			c[i]++;
			k /= i;
		}
	}
	c[k]++;
}

void solve () {
	int i;
	memset(c, 0, sizeof(c));

	for (i = 2; i <= n; i++)
		div(i);

	int ans = INF, t = ceil(sqrt(m));
	for (i = 2; i <= m && i <= t; i++) {
		if (m%i == 0) {
			int cnt = 0;
			while (m % i == 0) {
				cnt++;
				m /= i;
			}
			ans = min (ans, c[i]/cnt);
		}
	}
	if (m != 1)
		ans = min(ans, c[m]);

	if (ans == INF || ans == 0) 
		printf("Impossible to divide\n");
	else 
		printf("%d\n", ans);
}

int main () {
	int cas;
	scanf("%d", &cas);
	for (int i = 1; i <= cas; i++) {
		scanf("%d%d", &m, &n);
		printf("Case %d:\n", i);
		solve ();
	}
	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值