图的深度优先查找(DFS: Depth -FirstSearch)
(1)问题分析
DFS可从任意一个顶点开始访问,其过程简要来说是对每一个可能的分支路径深入到不能再深入为止,而且每个顶点只能访问一次。
当从一个顶点无法深入访问时,这个顶点称为死端。在死端上,DFS沿来路后退一条边,到上一个顶点,尝试继续访问。
当后退到起始顶点并且起始顶点也是一个死端时,该算法停止。
如果仍有未访问顶点,算法从其中任一顶点开始,重复上述过程。
(2)解题思路
l 用栈记录DFS的遍历顺序
在第一次访问一个顶点的时候,将其入栈;当它成为一个死端的时候,将其出栈。
例:从顶点a开始用DFS算法遍历下图,按字母顺序选择未访问顶点。
过程:请参照课件
l 也可用深度优先查找森林表示DFS遍历顺序
遍历的初始顶点作为该森林中第一棵树的根。
任何一个顶点第一次从哪个顶点被访问到,就将其作为哪个顶点的子女。
连接这样两个顶点的边称为树向边。所有这种边构成一个森林。
从一个顶点向下一个顶点访问时,可能会遇到一条指向已访问顶点的边,并且这个顶点不是它的父母,这种边称为回边。
代码实现:
#include <iostream>
#include <cstring>
#define MAX(a,b) (a)>(b)?(a):(b)
#define MIN(a,b) (a)<(b)?(a):(b)
using namespace std;
int map[30][30];
int tof[30];
int maxn = -1, minn = 30;
// 从第a点搜索,a为路线中的第b个点
void DFS(int a, int b)
{
int i;
// 如果a没有被遍历过,则输出a点
if (!tof[a]) return ;
else tof[a] = 0;
for (i = 0; i < b; ++i)
printf(" ");
printf("%c\n", a + 'a');
// 继续搜索
for (i = 0; i <= maxn; ++i)
if (map[a][i])
DFS(i, b + 1);
}
int main()
{
int n, m;
char a, b;
int c, d;
int i;
// 输入
memset(map, 0, sizeof(map));
memset(tof, 0, sizeof(tof));
printf("请输入顶点个数n以及边数m,格式为<n m>:");
cin >> n >> m;
printf("请分别输入%d条边所对应的两个顶点,格式为<a b>:\n",m);
for (i = 0; i < m; ++i)
{
cin >> a >> b;
c = a - 'a';
d = b - 'a';
tof[c] = tof[d] = 1;
// 构建邻接矩阵,求出最小点和最大点
map[c][d] = map[d][c] = 1;
maxn = MAX(maxn, c);
maxn = MAX(maxn, d);
minn = MIN(minn, c);
minn = MIN(minn, d);
}
// 进行深度优先搜索
printf("深度优先生成树为:\n");
for (i = minn; i <= maxn; ++i)
if (tof[i])
DFS(i, 0);
printf("遍历结束!\n");
}
画如下所示的图:
运行结果:
所形成的生成树为: